Damage Detection of the Pipes Conveying Fluid on the Pasternak Foundation Using the Matching Pursuit Method

Nahid Khomarian , Ramazan-Ali Jafari-Talookolaei , Morteza Saadatmorad , Reza Haghani

Journal of Marine Science and Application ›› : 1 -19.

PDF
Journal of Marine Science and Application ›› : 1 -19. DOI: 10.1007/s11804-025-00638-z
Research Article

Damage Detection of the Pipes Conveying Fluid on the Pasternak Foundation Using the Matching Pursuit Method

Author information +
History +
PDF

Abstract

The current study examines damage detection in fluid-conveying pipes supported on a Pasternak foundation. This study proposes a novel method that uses the matching pursuit (MP) algorithm for damage detection. The governing equations of motion for the pipe are derived using Hamilton’s principle. The finite element method, combined with the Galerkin approach, is employed to obtain the mass, damping, and stiffness matrices. To identify damage locations through pipe mode-shape decomposition, an index called the “matching pursuit residual” is introduced as a novel contribution of this study. The proposed method facilitates damage detection at various levels and locations under different boundary conditions. The findings demonstrate that the MP residual damage index can accurately localize damage in the pipes. Furthermore, the results of the numerical and experimental tests showcase the efficiency of the proposed method, highlighting that the MP signal approximation algorithm effectively detects damage in structures.

Cite this article

Download citation ▾
Nahid Khomarian, Ramazan-Ali Jafari-Talookolaei, Morteza Saadatmorad, Reza Haghani. Damage Detection of the Pipes Conveying Fluid on the Pasternak Foundation Using the Matching Pursuit Method. Journal of Marine Science and Application 1-19 DOI:10.1007/s11804-025-00638-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anand V. Entropy generation analysis of laminar flow of a nanofluid in a circular tube immersed in an isothermal external fluid Energ., 2015, 93: 154-164.

[2]

Ashley H, Haviland G. Bending vibrations of a pipe line containing flowing fluid J. Appl. Mech., 1950, 17(3): 229-232.

[3]

Bao C, Hao H, Li ZX. Integrated ARMA model method for damage detection of subsea pipeline system Eng. Struct., 2013, 48: 176192.

[4]

Belabed Z, Tounsi A, Al-Osta MA, Tounsi A, Minh HL. On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation Geomech. & Eng., 2024, 36(2): 183

[5]

Benjamin TB. Dynamics of a system of articulated pipes conveying fluid-I Theory. Proc. R. Soc. Lond. A, 1962, 261(1307): 457486

[6]

Benjamin TB, Batchelor GK. Dynamics of a system of articulated pipes conveying fluid-II Experiments. Proc. R. Soc. Lond. A, 1961, 261(1307): 487-499.

[7]

Bouafia K, Selim MM, Bourada F, Bousahla AA, Bourada M, Tounsi A, Tounsi A. Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model Steel & Compos. Struct., 2021, 41(4): 487-503

[8]

Bounouara F, Sadoun M, Saleh MMS, Chikh A, Bousahla AA, Kaci A, Bourada F, Tounsi A, Tounsi A. Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates Steel Compos. Struct., 2023, 47(6): 693-707

[9]

Buethe I, Torres-Arredondo MA, Mujica Delgado LE, Rodellar Benedé J, Fritzen CP. Damage detection in piping systems using pattern recognition techniques Proceedings 6th European Workshop on Structural Health Monitoring & 1st European Conference on Prognostics and Health Management, Dresden, Germany, 2013 1-8

[10]

Carden EP, Fanning P. Vibration based condition monitoring: a review Struct. Healt. Monit., 2004, 3(4): 355-377.

[11]

Chakraborty D, Kovvali N, Wei J, Papandreou-Suppappola A, Cochran D, Chattopadhyay A. Damage classification structural health monitoring in bolted structures using time-frequency techniques J. Intell. Mater. Sys. & Struct., 2009, 20(11): 1289-1305.

[12]

Chatzopoulou G, Karamanos SA, Varelis GE. Finite element analysis of cyclically-loaded steel pipes during deep water reeling installation Ocean Eng., 2016, 124: 113-124.

[13]

Chellapilla KR, Simha HS. Critical velocity of fluid-conveying pipes resting on two-parameter foundation J. Sound Vib., 2007, 302(1–2): 387-397.

[14]

Chu CL, Lin YH. Finite element analysis of fluid-conveying timoshenko pipes Shock Vib., 1995, 2(3): 247-255.

[15]

Das S, Saha P, Patro SK. Vibration-based damage detection techniques used for health monitoring of structures: a review J. Civ. Struct. Health Monit., 2016, 6: 477-507.

[16]

Doebling SW, Farrar CR, Prime MB. A summary review of vibration-based damage identification methods Shock Vib. Digest, 1998, 30(2): 91-105.

[17]

El-Sayed TA, El-Mongy HH. Free vibration and stability analysis of a multi-span pipe conveying fluid using exact and variational iteration methods combined with transfer matrix method Appl. Math. Model., 2019, 71: 173-193.

[18]

Farrar CR, Worden K. An introduction to structural health monitoring Phil. Trans. R. Soc. A., 2007, 365(1851): 303-315.

[19]

Fu G, Tuo Y, Zhang H, Su J, Sun B, Wang K, Lou M. Effects of material characteristics on nonlinear dynamics of viscoelastic axially functionally graded material pipe conveying pulsating fluid J. Mar. Sci. Technol., 2023, 22: 247-259

[20]

Fu G, Wang X, Wang B, Su J, Wang K, Sun B. Dynamic behavior of axially functionally graded pipe conveying gasliquid two-phase flow Appl. Ocean Res., 2024, 142: 103827.

[21]

Ghadirian H, Mohebpour S, Malekzadeh P, Daneshmand F. Nonlinear free vibrations and stability analysis of FG-CNTRC pipes conveying fluid based on Timoshenko model Compos. Struct., 2022, 292: 115637.

[22]

Gresil M, Poohsai A, Chandarana N. Guided wave propagation and damage detection in composite pipes using piezoelectric sensors Procedia. Eng., 2017, 188: 148-155.

[23]

Hou R, Xia Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019 J. Sound Vib., 2021, 491: 115741.

[24]

Huang YM, Liu YS, Li BH, Li YJ, Yue ZF. Natural frequency analysis of fluid conveying pipeline with different boundary conditions Nucl. Eng. Des., 2010, 240(3): 461-467.

[25]

Jafari R, Razvarz S, Gegov A, Vatchova B. Deep learning for pipeline damage detection: an overview of the concepts and a survey of the state-of-the-art 2020 IEEE 10th International Conference on Intelligent Systems, 2020 178-182

[26]

Jafari-Talookolaei RA, Ahmadian MT. Free vibration analysis of a cross-ply laminated composite beam on pasternak foundation J. Comput. Sci., 2007, 3(1): 51-56.

[27]

Jendrzejczyk JA, Chen SS. Experiments on tubes conveying fluid Thin-Walled Struct., 1985, 3(2): 109-134.

[28]

Khatir S, Tiachacht S, Le Thanh C, Tran-Ngoc H, Mirjalili S, Wahab MA. A new robust flexibility index for structural damage identification and quantification Eng. Fail. Anal., 2021, 129: 105714.

[29]

Lafi DE, Bouhadra A, Mamen B, Menasria A, Bourada M, Bousahla AA, Bourada F, Tounsi A, Tounsi A, Yaylaci M. Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations Struct. Eng. Mech., 2024, 89(2): 103-119

[30]

Lee SI, Chung J. New non-linear modelling for vibration analysis of a straight pipe conveying fluid J. Sound Vib., 2002, 254(2): 313-325.

[31]

Lee U, Oh H. The spectral element model for pipelines conveying internal steady flow Eng. Struct., 2003, 25(8): 1045-1055.

[32]

Lee U, Park J. Spectral element modelling and analysis of a pipeline conveying internal unsteady fluid J. Fluids Struct., 2006, 22(2): 273-292.

[33]

Li B, Wang Z, Jing L. Dynamic response of pipe conveying fluid with lateral moving supports Shock Vib., 2018, 2018(1): 3295787.

[34]

Li M, Ni Q, Wang L. Nonlinear dynamics of an underwater slender beam with two axially moving supports Ocean Eng., 2015, 108: 402-415.

[35]

Li S, Karney BW, Liu G. FSI research in pipeline systems–A review of the literature J. Fluids Struct., 2015, 57: 277-297.

[36]

Li X, Vaz MA, Custódio AB. A finite element methodology for birdcaging analysis of flexible pipes with damaged outer layers Mar. Struct., 2023, 89: 103397.

[37]

Li YD, Yang YR. Vibration analysis of conveying fluid pipe via He’s variational iteration method Appl. Math. Model., 2017, 43: 409-420.

[38]

Liang X, Zha X, Jiang X, Wang L, Leng J, Cao Z. Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary conditions Ocean Eng., 2018, 163: 183190.

[39]

Liu ZZ, Li TY, Zhu X, Zhang JJ. The effect of hydrostatic pressure fields on the dispersion characteristics of fluid-shell coupled system J. Mar. Sci., 2010, 9: 129-136

[40]

Logan DL A first course in the finite element method, 2011 4th edn Canada Thomson

[41]

Ma Y, You Y, Chen K, Feng A. Analysis of vibration stability of fluid conveying pipe on the two-parameter foundation with elastic support boundary conditions J. Ocean Eng. Sci., 2022, 9(6): 616-629.

[42]

Ma Y, You Y, Chen K, Hu L, Feng A. Application of harmonic differential quadrature (HDQ) method for vibration analysis of pipes conveying fluid Appl. Math. Comput., 2023, 439: 127613

[43]

Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries IEEE Trans. Signal Process., 1993, 41(12): 3397-3415.

[44]

Meenakumari HNR, Zanganeh H, Hossain M. Effect of slug characteristics on the nonlinear dynamic response of a long flexible fluid-conveying cylinder Appl. Ocean Res., 2024, 147: 103978.

[45]

Mudhaffar IM, Chikh A, Tounsi A, Al-Osta MA, Al-Zahrani MM, Al-Dulaijan SU. Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads Struct. Eng. Mech., 2023, 86(2): 167-180

[46]

Nahvi H, Jabbari M. Crack detection in beams using experimental modal data and finite element model Int. J. Mech. Sci., 2005, 47(10): 1477-1497.

[47]

Nguyen KV. Mode shapes analysis of a cracked beam and its application for crack detection J. Sound Vib., 2014, 333(3): 848-872.

[48]

Ni Q, Zhang ZL, Wang L. Application of the differential transformation method to vibration analysis of pipes conveying fluid Appl. Math. Comput., 2011, 217(16): 7028-7038

[49]

Olson LG, Jamison D. Application of a general purpose finite element method to elastic pipes conveying fluid J. Fluids Struct., 1997, 11(2): 207-222.

[50]

Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes J. Sound Vib., 1991, 145(2): 321332.

[51]

Peeters B, Maeck J, De Roeck G. Vibration-based damage detection in civil engineering: excitation sources and temperature effects Smart Mater. Struct., 2001, 10(3): 518.

[52]

Saadatmorad M, Jafari-Talookolaei RA, Pashaei MH, Khatir S. Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique Compos. Struct., 2021, 278: 114656.

[53]

Saadatmorad M, Khatir S, Cuong-Le T, Benaissa B, Mahmoudi S. Detecting damages in metallic beam structures using a novel wavelet selection criterion J. Sound Vib., 2024, 578: 118297.

[54]

Saadatmorad M, Shahavi MH, Gholipour A. Damage detection in laminated composite beams reinforced with nano-particles using covariance of vibration mode shape and wavelet transform J. Vib. Eng. Technol., 2024, 12(3): 2865-2875.

[55]

Saadatmorad M, Talookolaei RAJ, Pashaei MH, Khatir S, Wahab MA. Pearson correlation and discrete wavelet transform for crack identification in steel beams Math., 2022, 10(15): 2689.

[56]

Seguini M, Djamel N, Djilali B, Khatir S, Wahab MA. Crack prediction in beam-like structure using ANN based on frequency analysis Frat. Integrita. Strutt., 2022, 16(59): 18-34.

[57]

Sha G, Radzieński M, Cao M, Ostachowicz W. A novel method for single and multiple damage detection in beams using relative natural frequency changes Mech. Syst. Signal Process., 2019, 132: 335-352.

[58]

Song Z, Qi X, Liu Z, Ma H. Experimental study of guided wave propagation and damage detection in large diameter pipe filled by different fluids NDT & E International, 2018, 93: 78-85.

[59]

Sotoudehnia E, Shahabian F, Sani AA. A new method for damage detection of fluid-structure systems based on model updating strategy and incomplete modal data Ocean Eng., 2019, 187: 106200.

[60]

Tahir SI, Tounsi A, Chikh A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM. The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT Steel Compos. Struct. Int. J., 2022, 42(4): 501-511

[61]

Thomson WT. Theory of vibration with applications NASA STI/Recon Technical Report A., 1993, 93: 39794

[62]

Tijsseling AS. Fluid-structure interaction in liquid-filled pipe systems: a review J. Fluids Struct., 1996, 10(2): 109-146.

[63]

Tounsi A, Bousahla AA, Tahir SI, Mostefa AH, Bourada F, Al-Osta MA, Tounsi A. Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation Int. J. Struct. Stab. Dyn., 2024, 24(11): 2450117.

[64]

Tounsi A, Mostefa AH, Attia A, Bousahla AA, Bourada F, Tounsi A, Al-Osta MA. Free vibration investigation of functionally graded plates with temperature dependent properties resting on a viscoelastic foundation Struct. Eng. Mech., 2023, 86(1): 1-16

[65]

Tounsi A, Mostefa AH, Bousahla AA, Tounsi A, Ghazwani MH, Bourada F, Bouhadra A. Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak’s elastic foundations Steel Compos. Struct., 2023, 49(3): 307323

[66]

Vassilev VM, Djondjorov PA. Dynamic stability of viscoelastic pipes on elastic foundations of variable modulus J. Sound Vib., 2006, 297(1–2): 414-419.

[67]

Wahab MA, De Roeck G. Damage detection in bridges using modal curvatures: application to a real damage scenario J. Sound Vib., 1999, 226(2): 217-235.

[68]

Wang F. Effective design of submarine pipe-in-pipe using finite element analysis Ocean Eng., 2018, 153: 23-32.

[69]

Wang H, Sun D. The application of matching pursuit based on multi feature pattern set in the signal processing of rotating machinery J. Vib. Control., 2019, 25(13): 1974-1987.

[70]

Yang Z, Wang L. Structural damage detection by changes in natural frequencies J. Intell. Mater. Syst. Struct., 2010, 21(3): 309-319.

[71]

Yu H, Cai C, Yuan Y, Jia M. Analytical solutions for Euler-Bernoulli Beam on Pasternak foundation subjected to arbitrary dynamic loads Int. J. Numer. Anal. Methods., 2017, 41(8): 1125-1137.

[72]

Zaitoun MW, Chikh A, Tounsi A, Sharif A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM. An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects Eng. Comput., 2023, 39(2): 1127-1141.

[73]

Zhai HB, Wu ZY, Liu YS, Yue ZF. Dynamic response of pipeline conveying fluid to random excitation Nucl. Eng. Des, 2011, 241(8): 2744-2749.

[74]

Zhang YL, Reese JM, Gorman DG. Finite element analysis of the vibratory characteristics of cylindrical shells conveying fluid Comput. Methods. Appl. Mech. Eng., 2002, 191(45): 5207-5231.

RIGHTS & PERMISSIONS

Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/