Time-Lapse Full-Waveform Inversion Using Cross-Correlation-Based Dynamic Time Warping

Jianhua Wang , Qingping Li , Shouwei Zhou , Yufa He

Journal of Marine Science and Application ›› : 1 -11.

PDF
Journal of Marine Science and Application ›› : 1 -11. DOI: 10.1007/s11804-024-00440-3
Research Article

Time-Lapse Full-Waveform Inversion Using Cross-Correlation-Based Dynamic Time Warping

Author information +
History +
PDF

Abstract

Offshore carbon capture, utilization, and storage (OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions. Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion (FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping (CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide (CO2) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse full-waveform inversion (FWI) method is applied to the Frio-2 CO2 storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO2 injection are reconstructed by the difference between the baseline and the monitor models.

Keywords

Full-waveform inversion / Dynamic time warping / Ocean carbon dioxide storage monitoring / Discrepancy estimation / Model test

Cite this article

Download citation ▾
Jianhua Wang, Qingping Li, Shouwei Zhou, Yufa He. Time-Lapse Full-Waveform Inversion Using Cross-Correlation-Based Dynamic Time Warping. Journal of Marine Science and Application 1-11 DOI:10.1007/s11804-024-00440-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arts R, Eiken O, Chadwick A, Zweigel P, Van der Meer L, Zinszner B. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 2004, 29(9–10): 1383-1392

[2]

Berkhout AJ, Verschuur DJ. Estimation of multiple scattering by iterative inversion, Part I: Theoretical considerations. Geophysics, 1997, 62(5): 1586-1595

[3]

Bosch M, Mukerji T, Gonzalez EF. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics, 2010, 75(5): 75A165-75A176

[4]

Bunks C, Saleck FM, Zaleski S, Chavent G. Multiscale seismic waveform inversion. Geophysics, 1995, 60(5): 1457-1473

[5]

Chi B, Dong L, Liu Y. Correlation-based reflection full-waveform inversion. Geophysics, 2015, 80(4): R189-R202

[6]

Daley TM, Ajo-Franklin JB, Doughty C. Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine pilot. International Journal of Greenhouse Gas Control, 2011, 5(4): 1022-1030

[7]

Daley TM, Solbau RD, Ajo-Franklin JB, Benson SM. Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics, 2007, 72(5): A57-A61

[8]

Dahlen FA, Hung SH, Nolet G. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophysical Journal International, 2000, 141(1): 157-174

[9]

Djebbi R, Alkhalifah T. Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase. Geophysical Journal International, 2014, 197(2): 975-986

[10]

Eide LI, Batum M, Dixon T, Elamin Z, Graue A, Hagen S, Hovorka S, Nazarian B, Nokleby PH, Olsen GI, Ringrose P, Vieira RAM. Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—A review. Energies, 2019, 12(10): 1945

[11]

Flohr A, Schaap A, Achterberg EP, Alendal G, Arundell M, Berndt C, Blackford J, Böttner C, Borisov SM, Brown R, Bull JM, Carter L, Chen B, Dale AW, Beer DD, Dean M, Deusner C, Dewar M, Durden JM, Elsen S, Fischer JP, Gana A, Gros J, Haeckel M, Hanz R, Holtappels M, Hosking B, Huvenne VAI, James RH, Koopmans D, Kossel E, Leighton TG, Li JH, Lichtschlag A, Linke P, Loucaides S, Martinez-Cabanas M, Matter JM, Mesher T, Monk S, Mowlem M, Oleynik A, Papadimitriou S, Paxton D, Pearce CR, Peel K, Roche K, Ruhl HA, Saleem U, Sands C, Saw K, Schmidt M, Sommer S, Strong SJ, Triest J, Ungerböck B, Walk J, White P, Widdicombe S, Wilson RE, Wright H, Wyatt J, Connelly D. Towards improved monitoring of offshore carbon storage: a real-world field experiment detecting a controlled sub-seafloor CO2 release. International Journal of Greenhouse Gas Control, 2021, 106: 103237

[12]

Furre AK, Eiken O, Alnes H, Vevatne JN, Kiær AF. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia, 2017, 114: 3916-3926

[13]

Hale D. Dynamic warping of seismic images. Geophysics, 2013, 78(2): S105-S115

[14]

Hansen O, Gilding D, Nazarian B, Osdal B, Ringrose P, Kristoffersen JB, Eiken O, Hansen H. Snohvit: The history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energy Procedia, 2013, 37: 3565-3573

[15]

Harris K, White D, Melanson D, Samson C, Daley TM. Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. International Journal of Greenhouse Gas Control, 2016, 50: 248-260

[16]

Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG. Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environmental Geosciences, 2006, 13(2): 105-121

[17]

Hu Q, Grana D, Innanen KA. Feasibility of seismic time-lapse monitoring of CO2 with rock physics parametrized full waveform inversion. Geophysical Journal International, 2023, 233(1): 402-419

[18]

Knapp CH, Carter GC. The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976, 24: 320-327

[19]

Li D, Peng S, Guo Y, Lu Y, Cui X, Du W. Reservoir multiparameter prediction method based on deep learning for CO2 geologic storage. Geophysics, 2023, 88(1): M1-M15

[20]

Li D, Peng S, Huang X, Guo Y, Lu Y, Cui X. Time-lapse full waveform inversion based on curvelet transform: Case study of CO2 storage monitoring. International Journal of Greenhouse Gas Control, 2021, 110: 103417

[21]

Li J. Accelerate the offshore CCUS to carbon-neutral China. Fundamental Research, 2022

[22]

Lu K, Li J, Guo B, Fu L, Schuster G. Tutorial for wave-equation inversion of skeletonized data. Interpretation, 2017, 5(3): SO1-SO10

[23]

Luo Y, Schuster GT. Wave-equation traveltime inversion. Geophysics, 1991, 56(5): 645-653

[24]

Ma Y, Hale D. Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion. Geophysics, 2013, 78(6): R223-R233

[25]

Meckel TA, Trevino R, Hovorka SD. Offshore CO2 storage resource assessment of the northern Gulf of Mexico. Energy Procedia, 2017, 114: 4728-4734

[26]

Métivier L, Allain A, Brossier R, Mérigot Q, Oudet E, Virieux J. Optimal transport for mitigating cycle skipping in full-waveform inversion: A graph-space transform approach. Geophysics, 2018, 83(5): R515-R540

[27]

Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 2004, 303(5656): 338-343

[28]

Nocedal J, Wright SJ. Numerical optimization, 2006, New York, USA: Springer

[29]

Plessix R. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 2006, 167(2): 495-503

[30]

Pyun S, Shin C, Min DJ, Ha T. Refraction traveltime tomography using damped monochromatic wavefield. Geophysics, 2005, 70(2): U1-U7

[31]

Queißer M, Singh SC. Localizing CO2 at sleipner—Seismic images versus P-wave velocities from waveform inversion. Geophysics, 2013, 78(3): B131-B146

[32]

Ringrose PS, Meckel TA. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Scientific Reports, 2019, 9(1): 1-10

[33]

Roche B, Bull JM, Marin-Moreno H, Leighton TG, Falcon-Suarez IH, Tholen M, White PR, Provenzano G, Lichtschlag A, Li J, Faggetter M. Time-lapse imaging of CO2 migration within near-surface sediments during a controlled sub-seabed release experiment. International Journal of Greenhouse Gas Control, 2021, 109: 103363

[34]

Saito H, Nobuoka D, Azuma H, Xue Z. Time lapse cross well seismic tomography monitoring CO2 geological sequestration at Nagaoka pilot project site. Journal of MMIJ, 2008, 124: 78-86

[35]

Sirgue L, Pratt RG. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 2004, 69(1): 231-248

[36]

Suicmez VS. Feasibility study for carbon capture utilization and storage (CCUS) in the Danish North Sea. Journal of Natural Gas Science and Engineering, 2019, 68: 102924

[37]

Tarantola A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8): 1259-1266

[38]

Tromp J, Tape C, Liu Q. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 2005, 160(1): 195-216

[39]

Vandeweijer V, Van Der Meer B, Hofstee C, Mulders F, D’Hoore D, Graven H. Monitoring the CO2 injection site: K12-B. Energy Procedia, 2011, 4: 5471-5478

[40]

Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics. Geophysics, 2009, 74(6): WCC1-WCC26

[41]

Wang J, Dong L, Huang C, Wang Y. Crosscorrelation-based dynamic time warping and its application in wave equation reflection traveltime inversion. Geophysics, 2023, 88(6): R737-R749

[42]

Wang Y, Morozov IB. Time-lapse acoustic impedance variations during CO2 injection in Weyburn oilfield, Canada. Geophysics, 2020, 85(1): M1-M13

[43]

Zhang Z, Alkhalifah T, Wu Z, Liu Y, He B, Oh J. Normalized nonzero-lag crosscorrelation elastic full-waveform inversion. Geophysics, 2019, 84(1): R1-R10

[44]

Zhao J, Itti L. ShapeDTW: Shape dynamic time warping. Pattern Recognition, 2018, 74: 171-184

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/