Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage

Bin Liu , Yutong Fu , Pengfei Wen

Journal of Marine Science and Application ›› : 1 -6.

PDF
Journal of Marine Science and Application ›› : 1 -6. DOI: 10.1007/s11804-024-00438-x
Research Article

Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage

Author information +
History +
PDF

Abstract

To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage (CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO2 distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO2 distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable (Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a high-frequency source (the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for time-lapse seismic monitoring of oceanic CCS.

Keywords

Carbon capture and storage / Hcable / Seismic monitoring / High resolution image / High frequency seismic source

Cite this article

Download citation ▾
Bin Liu, Yutong Fu, Pengfei Wen. Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage. Journal of Marine Science and Application 1-6 DOI:10.1007/s11804-024-00438-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ajo-Franklin JB, Peterson J, Doetsch J, Daley TM. High-resolution characterization of a CO2 plume using crosswell seismic tomography: Cranfield, MS, USA. International Journal of Greenhouse Gas Control, 2013, 18: 497-509

[2]

Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner offshore Norway. First Break, 2008, 26(1): 65-72

[3]

Arts R, Eiken O, Chadwick RA, Zweigel P, Van Der Meer L, Zinszner B. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 2004, 29: 1383-1393

[4]

Blackford J, Stahl H, Bull J M, Bergès BJP, Cevatoglu M, Lichtschlag A, Connelly D, James RH, Kita J, Long D, Naylor M, Shitashima K, Smith D, Taylor P, Wright I, Akhurst M, Chen B, Gernon TM, Hauton C, Widdicombe S. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Climate Change, 2014, 4(11): 1011-1016

[5]

Chadwick RA, Arts R, Eiken O, Kirby GA, Lindeberg E, Zweigel P. 4D seismic imaging of an injected CO2 plume at the sleipner field, central North Sea. Geological Society Memoir, 2004, 29(1): 311-320

[6]

Chadwick RA, Marchant BP, Williams GA. CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at sleipner. Energy Procedia, 2014, 63: 4224-4239

[7]

Cheraghi S, White DJ, Draganov D, Bellefleur G, Craven JA, Roberts B. Passive seismic reflection interferometry: A case study from the aquistore CO2 storage site, Saskatchewan, Canada. Geophysics, 2017, 82(3): B79-B93

[8]

Cowton LR, Neufeld JA, White NJ, Bickle MJ, White JC, Chadwick RA. An inverse method for estimating thickness and volume with time of a thin CO2-filled layer at the Sleipner Field, North Sea. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 5068-5085

[9]

Furre AK, Eiken O. Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophysical Prospecting, 2014, 62(5): 1075-1088

[10]

Furre AK, Eiken O, Alnes H, Vevatne JN, Kiær AF. 20 years of monitoring CO2-injection at sleipner. Energy Procedia, 2017, 114: 3916-3926

[11]

Ghosh R, Sen MK, Vedanti N. Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling. International Journal of Greenhouse Gas Control, 2015, 32: 147-158

[12]

Harris K, White D, Melanson D, Samson C, Daley TM. Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. International Journal of Greenhouse Gas Control, 2016, 50: 248-260

[13]

Jedari-Eyvazi F, Bayrakci G, Minshull TA, Bull JM, Henstock TJ, Macdonald C, Robinson AH. Seismic characterization of a fluid escape structure in the North Sea: the Scanner Pockmark complex area. Geophysical Journal International, 2023, 234(1): 597-619

[14]

Li JH, Yu FL, Niu XW, Zhou T, Zhang YX, Li WL. Advances and future development of monitoring technologies for marine carbon storage. Advance in Earth Science, 2023, 38(11): 1121-1144

[15]

Liang J, Zhang W, Lu JA, Wei JG, Kuang ZG, He Y. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5-W9-2018. Marine Geology, 2019, 418: 106042

[16]

Liu B, Xu YX, Xue H, Wen PF, Meng DJ. Seismic imaging of a seepage gas hydrate system with a harrow-like acquisition geometry. Acta Geophys, 2022, 71: 1717-1728

[17]

Long AS. The revolution in seismic resolution: High density 3D spatial sampling developments and results. ASEG Extended Abstracts, 2004, 2004(1): 1-4

[18]

Marsset B, Menut E, Ker S, Thomas Y, Regnault JP, Leon P, Martinossi H, Artzner L, Chenot D, Dentrecolas S, Spychalski B, Mellier G, Sultan N. Deep-towed high resolution multichannel seismic imaging. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 93: 83-90

[19]

McGee TM. A single-channel seismic reflection method for quantifying lateral variations in BSR reflectivity. Marine Geology, 2000, 164(1–2): 29-35

[20]

Petersen CJ, Bünz S, Hustoft S, Mienert J, Klaeschen D. High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift. Marine and Petroleum Geology, 2010, 27(9): 1981-1994

[21]

Pevzner R, Isaenkov R, Yavuz S, Yurikov A, Tertyshnikov K, Shashkin P, Gurevich B, Correa J, Glubokovskikh S, Wood T, Freifeld B, Barraclough P. Seismic monitoring of a small CO2 injection using a multi-well DAS array: Operations and initial results of stage 3 of the CO2 CRC Otway project. International Journal of Greenhouse Gas Control, 2021, 110: 103437

[22]

Riedel M. 4D seismic time-lapse monitoring of an active cold vent, northern Cascadia margin. Mar Geophys Res, 2007, 28: 355-371

[23]

Ringrose P, Atbi M, Mason D, Espinassous M, Myhrer Ø, Iding M, Mathieson A, Wright I. Plume development around well KB-502 at the In Salah CO2 storage site. First Break, 2009, 27(1): 85-89

[24]

Robinson AH, Callow B, Böttner C, Yilo N, Provenzano G, Falcon-Suarez IH, Marín-Moreno H, Lichtschlag A, Bayrakci G, Gehrmann R, Parkes L, Roche B, Saleem U, Schramm B, Waage M, Lavayssière A, Li J, Jedari-Eyvazi F, Sahoo S, Reinardy B (2021) Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins. International Journal of Greenhouse Gas Control 106. https://doi.org/10.1016/j.ijggc.2020.103245

[25]

Schramm B, Berndt C, Dannowski A, Böttner C, Karstens J, Elger J (2021) Seismic imaging of an active fluid conduit below Scanner Pockmark, Central North Sea. Marine and Petroleum Geology 133. https://doi.org/10.1016/j.marpetgeo.2021.105302

[26]

Trautz R, Daley T, Miller D, Robertson M, Koperna G, Riestenberg D (2020) Geophysical monitoring using active seismic techniques at the Citronelle Alabama CO2 storage demonstration site. International Journal of Greenhouse Gas Control 99. https://doi.org/10.1016/j.ijggc.2020.103084

[27]

Wen PF, Liu B, Xu YX, Xue HYZ, Li Y, Meng DJ, Lu YQ. Novel seismic exploration technique targeting fine characterization of marine gas hydrates: seismic exploration with a harrow-like acquisition geometry. Progress in Geophysics, 2021, 36(5): 2215-2221

[28]

Widmaier M, Tønnessen R, Oukili J, Roalkvam C. Recent advances with wide-tow multi-sources in marine seismic streamer acquisition and imaging. First Break, 2020, 38(12): 75-79

[29]

Williams G, Chadwick A. Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection plume. Geophysics, 2012, 77(6): R245-R256

[30]

Wood WT, Hart PE, Hutchinson DR, Dutta N, Snyder F, Coffin RB, Gettrust JF. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery. Marine and Petroleum Geology, 2008, 25(9): 952-959

[31]

Yan H, Dupuy B, Romdhane A, Arntsen B. CO2 saturation estimates at Sleipner (North Sea) from seismic tomography and rock physics inversion. Geophysical Prospecting, 2019, 67(4): 1055-1071

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/