General Review of the Worldwide Tsunami Research

Sixue Cheng , Haijiang Liu

Journal of Marine Science and Application ›› 2023, Vol. 22 ›› Issue (1) : 14 -24.

PDF
Journal of Marine Science and Application ›› 2023, Vol. 22 ›› Issue (1) : 14 -24. DOI: 10.1007/s11804-023-00315-z
Review

General Review of the Worldwide Tsunami Research

Author information +
History +
PDF

Abstract

With the advancement of the global economy, the coastal region has become heavily developed and densely populated and suffers significant damage potential considering various natural disasters, including tsunamis, as indicated by several catastrophic tsunami disasters in the 21st century. This study reviews the up-to-date tsunami research from two different viewpoints: tsunamis caused by different generation mechanisms and tsunami research applying different research approaches. For the first issue, earthquake-induced, landslide-induced, volcano eruption-induced, and meteorological tsunamis are individually reviewed, and the characteristics of each tsunami research are specified. Regarding the second issue, tsunami research using post-tsunami field surveys, numerical simulations, and laboratory experiments are discussed individually. Research outcomes from each approach are then summarized. With the extending and deepening of the understanding of tsunamis and their inherent physical insights, highly effective and precise tsunami early warning systems and countermeasures are expected for the relevant disaster protection and mitigation efforts in the coastal region.

Keywords

Earthquake induced tsunami / Landslide induced tsunami / Volcano eruption induced tsunami / Meteorological tsunami / Post-tsunami field survey / Numerical modeling / Laboratory experiment

Cite this article

Download citation ▾
Sixue Cheng, Haijiang Liu. General Review of the Worldwide Tsunami Research. Journal of Marine Science and Application, 2023, 22(1): 14-24 DOI:10.1007/s11804-023-00315-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai C, Ma Y, Yuan C, Xie Z, Dong G. A three-dimensional non-hydrostatic model for tsunami waves generated by submarine landslides. Appl. Math. Model., 2021, 96: 1-19

[2]

Amores A, Monserrat S, Marcos M, Argüeso D, Villalonga J, Jordà G, Gomis D. Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption. Geophys. Res. Lett., 2022, 49: e2022GL098240

[3]

Borrero JC. Field survey of Northern Sumatra and Banda Aceh, Indonesia after the Tsunami and Earthquake of 26 December 2004. Seismol. Res. Lett., 2005, 76(3): 312-320

[4]

Bourgeois J. Geologic effects and records of tsunamis. In: E. N. Bernard, A. R. Robinson (eds.) The Sea, 2009, 15: 53-91

[5]

Brunt KM, Okal EA, MacAyeal DR. Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. J. Glaciol., 2011, 57(205): 785-788

[6]

Burwell D, Tolkova E, Chawla A. Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model., 2007, 19: 10-30

[7]

Carvajal M, Sepúlveda I, Gubler A, Garreaud R. Worldwide signature of the 2022 Tonga Volcanic Tsunami. Geophys. Res. Lett., 2022, 49: e2022GL098153

[8]

Cheng S, Liu H. Are all KdV-type shallow water wave equations the same with uniform solutions? Coastal Eng. J., 2020, 62(4): 460-472

[9]

Cheng S, Liu H. Weakly nonlinear waves over the bottom disturbed topography: Korteweg-de Vries equation with variable coefficients. Eur. J. Mech. B-Fluid, 2023, 98: 238-246

[10]

Cheng S, Zeng J, Liu H. A comprehensive review of the worldwide existing tsunami databases. J. Earthq. Tsunami, 2020, 14(5): 2040003

[11]

Choi BH, Pelinovsky E, Kim KO, Lee JS. Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat. Hazards. Earth. Syst. Sci., 2003, 3: 321-332

[12]

Deng X, Liu H, Jiang Z, Baldock T. Swash flow properties with bottom resistance based on the method of characteristics. Coastal Eng., 2016, 114: 25-34

[13]

Duan W, Zhao B. Simulation on 2D underwater landslide-induced tsunamis. Theor. App. Mech. Lett., 2013, 3: 032004

[14]

Elbanna A, Abdelmeguida M, Ma X, Amlanic F, Bhatd HS, Synolakise C, Rosakis AJ. Anatomy of strike-slip fault tsunami genesis. P. Natl Acad. Sci USA (PNAS), 2021, 118(19): e2025632118

[15]

Exton M, Yeh H. Effects of an impermeable layer on pore pressure response to tsunami-like inundation. Proc. R. Soc. A, 2022, 478: 20210605

[16]

Fritz HM, Borrero JC. Somalia field survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22(3): 219-233 suppl.

[17]

Fritz HM, Blount CD, Thwin S, Thu MK, Chan N. Cyclone Nargis storm surge in Myanmar. Nat. Geosci., 2009, 2: 448-449

[18]

Fritz HM, Mohammed F, Yoo J. Cummins P R, Satake K, Kong LSL. Lituya Bay landslide impact generated Mega-Tsunami 50th Anniversary. Tsunami Science Four Years After the 2004 Indian Ocean Tsunami, Pageoph Topical Volumes, 2009, Basel: Birkhäuser

[19]

Fritz HM, Phillips DA, Okayasu A, Shimozono T, Liu H, Mohammed F, Skanavis V, Synolakis CE, Takahashi T. The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys. Res. Lett., 2012, 39: L00G23

[20]

Fuhrman DR, Madsen PA. Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coastal Eng., 2009, 56(7): 747-758

[21]

Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets Space, 2011, 63: 55

[22]

Gao X, Zhao G, Niu X. An approach for quantifying nearshore tsunami height probability and its application to the Pearl River Estuary. Coast. Eng., 2022, 175: 104139

[23]

Geist EL, Parsons T. Probabilistic analysis of tsunami hazards. Nat. Hazards., 2006, 37: 277-314

[24]

Geist EL, Lynett PJ. Source processes for the probabilistic assessment of tsunami hazards. Oceanography, 2014, 27: 86-93

[25]

Goseberg N, Wurpts A, Schlurmann T. Laboratory-scale generation of tsunami and long waves. Coastal Eng., 2013, 79: 57-74

[26]

Goto C, Ogawa Y, Shuto N, Imamura F (1997) Numerical method of tsunami simulation with the leap-frog scheme. IUGG/IOC Time project, Manuals and Guides, UNESCO

[27]

Gregg CE, Houghton BF, Paton D, Lachman R, Lachman J, Johnston DM, Wongbusarakum S. Natural warning signs of tsunamis: Human sensory experience and response to the 2004 Great Sumatra Earthquake and Tsunami in Thailand. Earthquake Spectra, 2006, 22(3): 671-691 suppl.

[28]

Grilli ST, Tappin DR, Carey S, Watt SFL, Ward SN, Grilli AR, Engwell SL, Zhang C, Kirby JT, Schambach L, Muin M. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep., 2019, 9: 11946

[29]

Gusman AR, Tanioka Y, Sakai S, Tsushima H. Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth Planet. Sci. Lett., 2012, 341–344: 234-242

[30]

Han P, Yu H, Yu X. A sloshing induced Tsunami: 2018 Palu Bay event. Applied Ocean Res., 2021, 117: 102915

[31]

Hossen MJ, Cummins PR, Dettmer J, Baba T. Tsunami waveform inversion or sea surface displacement following the 2011 Tohoku earthquake: importance of dispersion and source kinematics. J. Geophys. Res. Solid. Earth., 2015, 120: 6452-6473

[32]

Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK. A probabilistic tsunami hazard assessment for Indonesia. Nat. Hazards Earth Syst. Sci., 2014, 14: 3105-3122

[33]

Ide S, Baltay A, Beroza G. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science, 2011, 332: 1426-1429

[34]

IOC-UNESCO (1998) Post- Tsunami survey field guide. 1st ed., IOC Manuals and Guides, Intergovernmental Oceanographic Commission

[35]

Ishimura D, Miyauchi T. Historical and paleo-tsunami deposits during the last 4000 years and their correlations with historical tsunami events in Koyadori on the Sanriku Coast, northeastern Japan. Prog. Earth Planetary Sc., 2015, 2: 16

[36]

Kataoka R, Winn SD, Touber E. Meteotsunamis in Japan associated with the Tonga Eruption in January 2022. Scientific Online Letters on the Atmosphere, 2022, 18: 103-106

[37]

Kato A, Obara K, Igarashi T, Tsuruoka H, Nakagawa S, Hirata N. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science, 2012, 335: 705-708

[38]

Kihara N, Niida Y, Takabatake D, Kaida H, Shibayama A, Miyagawa Y. Large-scale experiments on tsunami-induced pressure on a vertical tide wall. Coastal Eng., 2015, 99: 46-63

[39]

Kihara N, Arikawa T, Asai T, Hasebe M, Ikeya T, Inoue S, Kaida H, Matsutomi H, Nakano Y, Okuda Y, Okuno S, Ooie T, Shigihara Y, Shoji G, Tateno T, Tsurudome C, Watanabe M. A physical model of tsunami inundation and wave pressures for an idealized coastal industrial site. Coastal Eng., 2021, 169: 103970

[40]

Kowalik Z, Murty TS. On some future tsunamis in the Pacific Ocean. Nat. Hazards, 1989, 1(4): 349-369

[41]

Krautwald C, Hafen HV, Niebuhr P, Vogele K, Schurenkamp D, Sieder M, Goseberg N. Large-scale physical modeling of broken solitary waves impacting elevated coastal structures. Coastal Eng. J., 2022, 64(1): 169-189

[42]

Kubota T, Saito T, Nishida K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science, 2022, 377: 91-94

[43]

Latter JN. Tsunamis of volcanic origin: summary of causes with particular references to Krakatoa, 1883. Bull Volcanol, 1981, 44(3): 467-490

[44]

Lau AYA, Switzer AD, Dominey-Howes D, Aitchison JC, Zong Y. Written records of historical tsunamis in the northeastern South China Sea — challenges associated with developing a new integrated database. Nat. Hazards Earth Syst. Sci., 2010, 10: 1793-1806

[45]

Lauber G, Hager WH. Experiments to dambreak wave: Horizontal channel. J. Hydraul. Res., 1998, 36(3): 291-307

[46]

LeVeque RJ, George DL (2008) High-resolution finite volume methods for the shallow water equations with topography and dry-states. Advances in Coastal and Ocean Engineering, Advanced Numerical models for Simulating Tsunami Waves and Runup, 43–73. DOI: https://doi.org/10.1142/9789812790910_0002

[47]

Li L, Qiu Q, Li Z, Zhang P. Tsunami hazard assessment in the South China Sea: A review of recent progress and research gaps. Sci. China Earth Sci., 2022, 65: 783-809

[48]

Li Y, Raichlen F. Solitary wave runup on plane slopes. J. Waterway, Port, Coastal Eng., 2001, 127(1): 33-44

[49]

Liu H, Liu H. Experimental study on the dam-break hydrodynamic characteristics under different conditions. J. Disaster Res., 2017, 12(1): 198-207

[50]

Liu H, Sakashita T, Sato S (2014) An experimental study on the tsunami boulder movement. Proceedings of 34th International Conference on Coastal Engineering, ICCE2014, Seoul. DOI: https://doi.org/10.9753/icce.v34.currents.16

[51]

Liu H, Shimozono T, Takagawa T, Okayasu A, Fritz HM, Sato S, Tajima Y. The 11 March 2011 Tohoku tsunami survey in Rikuzentakata and comparison with historical events. Pure Appl. Geophys., 2013, 170(6): 1033-1046

[52]

Liu PLF, Woo SB, Cho YS. Computer programs for tsunami propagation and inundation. Technical Report, Cornell University. Liu PLF, Lynett P, Fernando H, Jaffe BE, Fritz H, Higman B, Morton R, Goff J, Synolakis C (2005) Observations by the international tsunami survey team in Sri Lanka. Science, 1998, 308: 1595

[53]

Lobovsky L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A. Experimental investigation of dynamic pressure loads during dam break. J Fluid Struct., 2014, 48: 407-434

[54]

Lu S, Liu H, Deng X. An experimental study of the run-up process of breaking bores generated by dam-break under dry and wet bed conditions. J Earthq. Tsunami, 2018, 12(2): 1840005

[55]

MacInnes BT, Gusman AR, LeVeque RJ, Tanioka Y. Comparison of earthquake source models for the 2011 Tohoku event using tsunami simulations and nearfield observations. Bull. Seismol. Soc. Am., 2013, 103: 1256-1274

[56]

Maeno F, Imamura F. Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J. Geophys. Res., 2011, 116: B09205

[57]

McMurthy GM, Watts P, Fryer GJ, Smith JR, Imamura F. Giant landslides, mega-tsunamis and paleo-sea level in the Hawaiian Islands. Mar. Geol., 2004, 203: 219-233

[58]

Meilianda E, Dohmen-Janssen CM, Maathuisc BHP, Hulscherb SJMH, Mulder JPM. Short-term morphological responses and developments of Banda Aceh coast, Sumatra Island, Indonesia after the tsunami on 26 December 2004. Mar. Geol., 2010, 275: 96-109

[59]

Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. J. Natural Disaster Sci., 2001, 23(2): 83-88

[60]

Mori N, Takahashi T, Yasuda T, Yanagisawa H. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett., 2011, 38: L00G14

[61]

Mori N, Takahashi T, Esteban M. The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2012. Nationwide post event survey and analysis of the 2011 Tohoku Earthquake Tsunami. Coastal Eng. J., 2012, 54(4): 1250001

[62]

Muhari A, Heidarzadeh M, Susmoro H, Nugroho HD, Kriswati E, Supartoyo Wijanarto AB, Imamura F, Arikawa T. The December 2018 Anak Krakatau Volcano Tsunami as inferred from Post-Tsunami field surveys and spectral analysis. Pure Appl. Geophys., 2019, 176: 5219-5233

[63]

Myers EP, Baptista AM. Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska Tsunamis. Nat. Hazards, 2001, 23: 1-28

[64]

Nagai K, Muhari A, Pakoksung K, Watanabe M, Suppasri A, Arikawa T, Imamura F. Consideration of submarine landslide induced by 2018 Sulawesi earthquake and tsunami within Palu Bay. Coastal Eng. J., 2021, 63(4): 446-466

[65]

Nalbant SS, Steacy S, Sieh K, Natwidjaja D, McCloskey J. Earthquake risk on the Sunda trench. Nature, 2005, 435: 756-757

[66]

Niu X, Zhou H. Wave pattern induced by a moving atmospheric pressure disturbance. Appl. Ocean Res., 2015, 52: 37-42

[67]

Niu X, Chen Y. Energy accumulation during the growth of forced wave induced by a moving atmospheric pressure disturbance. Coastal Eng. J., 2020, 62(1): 23-34

[68]

Oetjen J, Engel M, Schuttrumpf H. Experiments on tsunami induced boulder transport — A review. Earth-Sci. Rev., 2020, 220: 103714

[69]

Okal EA, Fritz HM, Raad PE, Synolakis C, Al-Shijbi Y, Al-Saifi M. Oman field survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22(3): 203-218 suppl.

[70]

Onozato M, Nishigaki A, Okoshi K. Polycyclic aromatic hydrocarbons in sediments and bivalves on the Pacific Coast of Japan: Influence of tsunami and fire. PLoS ONE, 2016, 11(5): e0156447

[71]

Otsuka S. Visualizing Lamb waves from a volcanic eruption using meteorological satellite Himawari-8. Geophys. Res. Lett., 2022, 49: e2022GL098324

[72]

Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 2011, 475: 373-376

[73]

Paris R, Switzer AD, Belousova M, Belousov A, Ontowirjo B, Whelley PL, Ulvrova M. Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Nat. Hazards., 2014, 70: 447-470

[74]

Pattiaratchi CB, Wijeratne EMS. Are meteotsunamis an underrated hazard? Proc. R. Soc. A, 2015, 373: 20140377

[75]

Ramsden JD. Forces on a vertical wall due to long waves, bores, and dry-bed surges. J Waterw. Port, Coast. Ocean Eng., 1996, 122(3): 134-141

[76]

Ren Z, Zhao X, Liu H. Numerical study of the landslide tsunami in the South China Sea using Herschel-Bulkley rheological theory. Phys. Fluids, 2019, 31: 056601

[77]

Sandanbata O, Watada S, Satake K, Fukao Y, Sugioka H, Ito A, Shiobara H. Ray tracing for dispersive tsunamis and source amplitude estimation based on Green’s Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan. Pure. Appl. Geophys., 2018, 175: 1371-1385

[78]

Satake K, Bourgeois J, Abe K, Abke K, Tsuji Y, Imamura F, Lio Y, Katao H, Noguera E, Estrada F. Tsunami field survey of the 1992 Nicaragua earthquake. EoS, 1993, 74(13): 145-157

[79]

Satake K, Fujii Y, Harada T, Namegaya Y. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull. Seismol. Soc. Am., 2013, 103(2B): 1473-1492

[80]

Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M, Asada A. Displacement above the hypocenter of the 2011 Tohoku-Oki Earthquake. Science, 2011, 332(6036): 1395

[81]

Sato S. Numerical simulation of 1993 Southwest Hokkaido Earthquake Tsunami around Okushiri Island. J Waterw. Port, Coast. Ocean Eng., 1996, 122(5): 209-215

[82]

Sato S, Liu H, Takewaka S, Nobuoka H, Aoki S (2012) Tsunami damages of Nakoso Coast due to the 2011 Tohoku Earthquake. Proceedings of 33rd International Conference on Coastal Engineering, ICCE2012, Santander, Spain. DOI: https://doi.org/10.9753/icce.v33.currents.2

[83]

Schimmels S, Sriram V, Didenkulova I. Tsunami generation in a large scale experimental facility. Coastal Eng., 2016, 110: 32-41

[84]

Shen J, Wei L, Wu D, Liu H, Huangfu J. Spatiotemporal characteristics of the dam-break induced surge pressure on a vertical wall. Coastal Eng. J., 2020, 62(4): 566-581

[85]

Shen J, Liu H. On the structure dynamic response of a coastal structure subject to the dam break induced surge impact pressure. Coastal Eng. J., 2022, 64(2): 246-259

[86]

Shimozono T, Sato S, Okayasu Y, Tajima Y, Fritz HM, Liu H, Takagawa T. Propagation and inundation characteristics of the 2011 Tohoku tsunami on the central Sanriku Coast. Coastal Eng. J., 2012, 54(1): 1250004

[87]

Shuto N. Numerical simulation of tsunamis — Its present and near future. Nat. Hazards, 1991, 4: 171-191

[88]

Simkin T, Fiske RS. Krakatau 1883: the volcanic eruption and its effects, 1983, Washington, D.C.: Smithsonian Institution Press

[89]

Siripong A. Andaman Seacoast of Thailand field survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22(3): 187-202 suppl.

[90]

Sugawara D. Numerical modeling of tsunami: advances and future challenges after the 2011 Tohoku earthquake and tsunami. Earth-Sci. Rev., 2021, 214: 103498

[91]

Synolakis CE. The runup of solitary waves. J. Fluid Mech., 1987, 185: 523-545

[92]

Takagi H, Pratama MB, Kurobe S, Esteban M, Aranguiz R, Ke B. Analysis of generation and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi earthquake. Landslides, 2019, 16: 983-991

[93]

Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T, Kirby JT, Shi F, Ma M, Thingbaijam KKS, Mai PM. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar. Geol., 2014, 357: 344-361

[94]

Terry JP, Winspear N, Goff J, Tan PHH. Past and potential tsunami sources in the South China Sea: A brief synthesis. Earth-Sci. Rev., 2017, 167: 47-61

[95]

Titov V, Rabinovich AB, Mofjeld HO, Thomson RE, Gonzalez FI. The global reach of the 26 December 2004 Sumatra tsunami. Science, 2005, 309: 2045-2048

[96]

Titov VV, Gonzalez FI (1997) Implementation and testing of the method of splitting tsunami (MOST) model. NOAA Technical Memorandum ERL PMEL-112, Contribution No. 1927 from NOAA/Pacific Marine Environmental Laboratory

[97]

Vilibić I, Rabinovich AB, Anderson EJ. Special issue on the global perspective on meteotsunami science: editorial. Nat. Hazards, 2021, 106: 1087-1104

[98]

Wang G, Liang Q, Shi F, Zheng J. Analytical and numerical investigation of trapped ocean waves along a submerged ridge. J. Fluid Mech., 2021, 915: A54

[99]

Wang X (2009) User manual for COMCOT version 1.7. Edited by Liu PLF, Woo SB, Cho YS, Computer Programs for Tsunami Propagation and Inundation, Cornel University

[100]

Ward SN, Day S. Cumbre Vieja Volcano—Potential collapse and tsunami at La Palma, Canary Islands. Geophys. Res. Lett., 2001, 28(17): 3397-3400

[101]

Wu D, Liu H. Effects of the bed roughness and beach slope on the non-breaking solitary wave runup height. Coastal Eng., 2022, 174: 104122

[102]

Wuthrich D, Pfister M, Nistor I, Schleiss AJ. Experimental study of tsunami-like waves generated with a vertical release technique on dry and wet beds. J Waterw. Port, Coast. Ocean Eng., 2018, 144(4): 04018006

[103]

Xie W, Shimozono T. Water surge impingement onto a vertical wall: Laboratory experiments and stochastic analysis on impact pressure. Ocean Eng., 2022, 248: 110422

[104]

Yamada M, Ho TC, Mori J, Nishikawa Y, Yamamoto M. Tsunami triggered by the Lamb wave from the 2022 Tonga volcanic eruption and transition in the offshore Japan region. Geophys. Res. Lett., 2022, 49(15): 9

[105]

Yang M, Zheng Y, Liu H. Experimental study of the solitary wave induced groundwater hydrodynamics. Coastal Eng., 2022, 177: 104193

[106]

Ye L, Kanamori H, Rivera L, Lay T, Zhou Y, Sianipar D, Satake K. The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption. Sci. Adv., 2020, 6: eaaz1377

[107]

Yeh H, Liu P, Briggs M, Synolakis C. Propagation and amplification of tsunamis at coastal boundaries. Nature, 1994, 372: 353-355

[108]

Yeh H, Chadha RK, Francis M, Katada T, Latha G, Peterson C, Raghuraman G, Singh JP. Tsunami runup survey along the Southeast Indian Coast. Earthquake Spectra, 2006, 22(3): 173-186 suppl.

[109]

Yeh H, Sato S, Tajima Y. The 11 March 2011 East Japan Earthquake and Tsunami: Tsunami effects on coastal infrastructure and buildings. Pure Appl. Geophys., 2013, 170: 1019-1031

[110]

Yulianto E, Utari P, Satyawan IA. Communication technology support in disaster-prone areas: Case study of earthquake, tsunami and liquefaction in Palu, Indonesia. Int. J. Disast. Risk Res., 2020, 45: 101457

[111]

Zeng J, Liu H. An approximate explicit analytical solution for the frictionless swash hydrodynamics with an improved seaward boundary condition. Coastal Eng., 2022, 174: 104127

[112]

Zhao B, Duan W, Webster WC. Tsunami simulation with Green—Naghdi theory. Coastal Eng., 2011, 38: 389-396

[113]

Zhang X, Niu X. Probabilistic tsunami hazard assessment and its application to southeast coast of Hainan Island from Manila Trench. Coastal Eng., 2020, 155: 103596

[114]

Zhang Y, Liu H. Spatiotemporal variation of wave energy induced by an accelerated moving atmospheric pressure disturbance. Coastal Eng. J., 2021, 63(1): 83-91

[115]

Zhang Y, Liu H. Generation mechanisms of the water surface elevation induced by a moving atmospheric pressure disturbance. Ocean Eng., 2022, 255: 111469

[116]

Zitellini N, Mendes LA, Cordoba D, Danobeitia J, Nicolich R, Ribeiro GPA, Sartori R, Torelli L, Bartolome R, Bortoluzzi G, Calafato A, Carrilho F, Casoni L, Chierici F, Corela C, Correggiari A, Delia Vedova B, Gracia E, Jornet P, Landuzzi M, Ligi M, Magagnoli A, Marozzi G, Matias L, Penitenti D, Rodriguez P, Rovere M, Terrinha P, Vigliotti L, Ruiz AZ. Source of 1755 Lisbon Earthquake and Tsunami investigated. EoS, 2001, 82(26): 285-296

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/