Uncertainty Propagation of Structural Computation for Fatigue Assessment

Ludovic Mell , Valentine Rey , Franck Schoefs , Benjamin Rocher

Journal of Marine Science and Application ›› 2022, Vol. 21 ›› Issue (4) : 55 -66.

PDF
Journal of Marine Science and Application ›› 2022, Vol. 21 ›› Issue (4) : 55 -66. DOI: 10.1007/s11804-022-00300-y
Research Article

Uncertainty Propagation of Structural Computation for Fatigue Assessment

Author information +
History +
PDF

Abstract

Offshore wind substations are subjected to uncertain loads from waves, wind and currents. Sea states are composed of irregular waves which statistics are usually characterized. Irregular loads may induce fatigue failure of some structural components of the structures. By combining fatigue damage computed through numerical simulations for each sea state endured by the structure, it is possible to assess fatigue failure of the structure over the whole deployment duration. Yet, the influence of the discretization error on the fatigue damage is rarely addressed. It is possible to estimate the discretization error on the quantity of interest computed at the structural detail suspected to fail. However, the relation between this local quantity of interest and the fatigue damage is complex. In this paper, a method that allows propagating error bounds towards fatigue damage is proposed. While increasing computational burden, computing discretization error bounds is a useful output of finite element analysis. It can be utilized to either validate mesh choice or guide remeshing in case where potential error on the fatigue damage is too large. This method is applied to an offshore wind substation developped by Chantiers de l’Atlantique using two discretization error estimators in a single sea state.

Keywords

Offshore wind turbines / Uncertainty propagation / Fatigue damage / Discretization error

Cite this article

Download citation ▾
Ludovic Mell, Valentine Rey, Franck Schoefs, Benjamin Rocher. Uncertainty Propagation of Structural Computation for Fatigue Assessment. Journal of Marine Science and Application, 2022, 21(4): 55-66 DOI:10.1007/s11804-022-00300-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/