Water Entry Problems Simulated by an Axisymmetric SPH Model with VAS Scheme
Xiaoting Huang , Pengnan Sun , Hongguan Lyu , A.-Man Zhang
Journal of Marine Science and Application ›› 2022, Vol. 21 ›› Issue (2) : 1 -15.
Water Entry Problems Simulated by an Axisymmetric SPH Model with VAS Scheme
Water entry of marine structures has long been an important problem in ocean engineering. Among the different techniques to predict fluid-structure interactions during water entry, smoothed particle hydrodynamics (SPH) method gradually becomes a promising method that is able to solve the impact pressure and the splashing fluid jets simultaneously. However, for three-dimensional (3D) problems, SPH method is computationally expensive due to the huge number of particles that are needed to resolve the local impact pressure accurately. Therefore, in this work an axisymmetric SPH model is applied to solve different water entry problems with axisymmetric structures including spheres and cones with different deadrise angles. Importantly, the Volume Adaptive Scheme (VAS) is added to guarantee the homogeneousness of particle volumes during the simulation. The axisymmetric SPH model with VAS scheme will be introduced in detail and the numerical results will be sufficiently validated with experimental data to demonstrate the high robustness and accuracy of the SPH model for solving 3D axisymmetric water entry problems in an efficient way.
Water entry / Smoothed particle hydrodynamics / Slamming / Ocean engineering
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Brookshaw L (2003) April. Smooth particle hydrodynamics in cylindrical coordinates. In K. Burrage and R. B. Sidje (Eds.), Proc. of 10th Computational Techniques and Applications Conference CTAC-2001, Volume 44: pp. C114–C139 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
He F, Zhang H, Huang C and Liu M (2022) A stable SPH model with large c numbers for multi-phase ows with large density ratios. Journal of Computational Physics: 110944 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
Von Karman T and Wattendorf F (1929) The impact of sea planes during landing. naca tech. Technical report, Note 321 |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
/
| 〈 |
|
〉 |