Enhancement Channel Estimation Using Outer-Product Decomposition Algorithm Based on Frequency Transformation

Xiukun Li , Ji Wang , Dexin Zhao

Journal of Marine Science and Application ›› 2020, Vol. 19 ›› Issue (2) : 283 -292.

PDF
Journal of Marine Science and Application ›› 2020, Vol. 19 ›› Issue (2) : 283 -292. DOI: 10.1007/s11804-020-00148-0
Research Article

Enhancement Channel Estimation Using Outer-Product Decomposition Algorithm Based on Frequency Transformation

Author information +
History +
PDF

Abstract

The outer-product decomposition algorithm (OPDA) performs well at blindly identifying system function. However, the direct use of the OPDA in systems using bandpass source will lead to errors. This study proposes an approach to enhance the channel estimation quality of a bandpass source that uses OPDA. This approach performs frequency domain transformation on the received signal and obtains the optimal transformation parameter by minimizing the p-norm of an error matrix. Moreover, the proposed approach extends the application of OPDA from a white source to a bandpass white source or chirp signal. Theoretical formulas and simulation results show that the proposed approach not only reduces the estimation error but also accelerates the algorithm in a bandpass system, thus being highly feasible in practical blind system identification applications.

Keywords

Blind identification / Outer-product decomposition algorithm / Bandpass white signal / Chirp signal / Second-order statistics

Cite this article

Download citation ▾
Xiukun Li, Ji Wang, Dexin Zhao. Enhancement Channel Estimation Using Outer-Product Decomposition Algorithm Based on Frequency Transformation. Journal of Marine Science and Application, 2020, 19(2): 283-292 DOI:10.1007/s11804-020-00148-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A.-J V Paulraj A, Veen V. An analytical constant modulus algorithm. IEEE Trans Signal Process, 1996, 44(5): 1136-1155

[2]

Abdallah S, Psaromiligkos IN. Blind channel estimation for amplify-and-forward two-way relay networks employing M-PSK modulation. IEEE Trans Signal Process, 2011, 60(7): 3604-3615

[3]

Abed-Meraim K, Loubaton P, Moulines E. A subspace algorithm for certain blind identification problems. IEEE Trans Inf Theory, 2002, 43(2): 499-511

[4]

Boussé M, Debals O, Lathauwer LD. Tensor-based large-scale blind system identification using segmentation. IEEE Trans Signal Process, 2017, 99: 1-1

[5]

Comon P, Luciani X, Stegeman A. CONFAC decomposition approach to blind identification of underdetermined mixtures based on generating function derivatives. IEEE Trans Signal Process, 2012, 60(11): 5698-5713

[6]

Ding Z. An outer-product decomposition algorithm for multichannel blind identification. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, 1996, 8: 132-135

[7]

Ding Z. Matrix outer-product decomposition method for blind multiple channel identification. IEEE Trans Signal Process, 1997, 45(12): 3054-3061

[8]

Duhamel P, Gesbert D. Robust blind identification and equalization based on multi-step predictors. IEEE Trans Signal Process, 1997, 45(12): 3054-3061

[9]

Friedlander B, Porat B. Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments. IEEE Trans Autom Control, 1990, 35(1): 27-35

[10]

Gao C, Tai L, Zhuang J (2009) Underwater acoustic channel blind identification based on matrix outer-product decomposition algorithm. 2009 2nd International Congress on Image and Signal Processing, Tianjin pp. 1–4. https://doi.org/10.1109/CISP.2009.5304059

[11]

Ghofrani P, Schmeink A, Wang T (2018) A fast converging channel estimation algorithm for wireless sensor networks. IEEE Trans Signal Process (99):1–1. https://doi.org/10.1109/TSP.2018.2813301

[12]

Golub G, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J Num Anal Ser B, 1965, 2(2): 205-224

[13]

Jia S, Meng W, Zhao J (2009) Sparse underwater acoustic OFDM channel estimation based on superimposed training. J Mar Sci Appl (1):65–70. https://doi.org/10.1007/s11804-009-8015-2

[14]

Kailath T, Tong L, Xu G (1994) Blind identification and equalization based on second-order statistics: a time domain approach. IEEE transactions on information theory 340-349. https://doi.org/10.1109/18.312157

[15]

Karakutuk S, Tuncer TE. Channel matrix recursion for blind effective channel order estimation. IEEE Trans Signal Process, 2011, 59(4): 1642-1653

[16]

Nayebi E, Rao BD. Semi-blind channel estimation for multi-user massive MIMO systems. IEEE Trans Signal Process, 2018, 99: 1-1

[17]

Qiao G, Ma L, Babar Z. MIMO-OFDM underwater acoustic communication systems–a review. Phys Commun, 2017, 23: 56-64

[18]

Sato Y. A method of self-recovery equalization for multilevel amplitude-modulation. IEEE Trans Commun, 1975, 23: 679-682

[19]

Tong L, Zhao Q. Blind channel estimation by least squares smoothing. IEEE Trans Signal Process, 1999, 47(11): 3000-3012

[20]

Xie L, Yu C, Zhang C. Blind identification of multi-channel ARMA models based on second-order statistics. IEEE Trans Signal Process, 2012, 60(8): 4415-4420

[21]

Yu C, Xie L, Zhang C. Deterministic blind identification of IIR systems with output-switching operations. IEEE Trans Signal Process, 2014, 62(7): 1740-1749

[22]

Zhang Y. Adaptive MMSE equalization of underwater acoustic channels based on the linear prediction method. J Mar Sci Appl, 2011, 1: 113-120

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/