Design of Heading Fault-Tolerant System for Underwater Vehicles Based on Double-Criterion Fault Detection Method

Yanhui Wei , Jing Liu , Shenggong Hao , Jiaxing Hu

Journal of Marine Science and Application ›› 2019, Vol. 18 ›› Issue (4) : 530 -541.

PDF
Journal of Marine Science and Application ›› 2019, Vol. 18 ›› Issue (4) : 530 -541. DOI: 10.1007/s11804-019-00109-2
Research Article

Design of Heading Fault-Tolerant System for Underwater Vehicles Based on Double-Criterion Fault Detection Method

Author information +
History +
PDF

Abstract

This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference. The scheme is based on a double-criterion fault detection method using a redundant structure of a dual electronic compass. First, two subexpansion Kalman filters are set up to fuse data with an inertial attitude measurement system. Then, fault detection can effectively identify the fault sensor and fault source. Finally, a fault-tolerant algorithm is used to isolate and alarm the faulty sensor. The program can effectively detect the constant magnetic field interference, change the magnetic field interference and small transient magnetic field interference, and conduct fault tolerance control in time to ensure the heading accuracy of the system. Test verification shows that the system is practical and effective.

Keywords

Underwater robot / Heading fault tolerance / Redundant structure / Double-criteria failure detection / Federated Kalman filter / Electronic compass

Cite this article

Download citation ▾
Yanhui Wei, Jing Liu, Shenggong Hao, Jiaxing Hu. Design of Heading Fault-Tolerant System for Underwater Vehicles Based on Double-Criterion Fault Detection Method. Journal of Marine Science and Application, 2019, 18(4): 530-541 DOI:10.1007/s11804-019-00109-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arulampalam MS, Maskell S, Gordon N. A tutorial on particle filters for online nonlinearn-Gaussian Bayesian tracking. IEEE Trans Signal Process, 2002, 50: 174-188

[2]

Babcock PSI, Zinchuk JJ (1990) Fault-tolerant design optimization: application to an autonomous underwater vehicle navigation system. Proceedings of the Autonomous Underwater Vehicle Technology, pp 34–43. https://doi.org/10.1109/AUV.1990.110435

[3]

Mortensen Stefan P., Nyberg Michael, Thaning Pia, Saltin Bengt, Hellsten Ylva. Adenosine Contributes to Blood Flow Regulation in the Exercising Human Leg by Increasing Prostaglandin and Nitric Oxide Formation. Hypertension, 2009, 53(6): 993-999

[4]

Blanke M, Kinnaert M, Lunze DIJ (2006) Diagnosis and fault-tolerant control. Diagnosis and Fault-tolerant Control, pp 493–494. https://doi.org/10.1007/978-3-540-35653-0

[5]

Caron F, Davy M, Duflos E. Particle filtering for multisensor data fusion with switching observation models: application to land vehicle positioning. IEEE Trans Signal Process, 2007, 55: 2703-2719

[6]

Cheng XQ, Qu JY, Yan ZP, Bian XQ. H robust fault-tolerant controller design for an autonomous underwater vehicle’s navigation control system. J Mar Sci Appl, 2010, 9(1): 87-92

[7]

Mosammam A. M. The Oxford handbook of nonlinear filtering. Journal of Applied Statistics, 2012, 39(8): 1849-1850

[8]

Cui N, Han P, Mu R (2011) Fault-tolerant integrated navigation for reusable boost vehicle based on strong tracking UKF. AIAA international space Planes and hypersonic systems and technologies conference. https://doi.org/10.2514/6.2011-2385

[9]

Esfahani PM, Lygeros J. A tractable fault detection and isolation approach for nonlinear systems with probabilistic performance. IEEE Trans Autom Control, 2016, 61(3): 633-647

[10]

Fang J, Sun H, Cao J, Zhang X, Tao Y. A novel calibration method of magnetic compass based on ellipsoid fitting. IEEE Trans Instrum Meas, 2011, 60(6): 2053-2061

[11]

Feng Y B, Li X S, Zhang XJ (2015) Fault detection method for integrated navigation system of gyroscope and compass. Journal of instrument and meter 36:2381–2388.

[12]

Gao S, Zhong Y, Li W. Robust adaptive filtering method for SINS/SAR integrated navigation system. Aerosp Sci Technol, 2011, 15(6): 425-430

[13]

Gao W, Zhang Y, Wang JG. A strapdown interial navigation system/Beidou/Doppler velocity log integrated navigation algorithm based on a cubature Kalman filter. Sensors, 2014, 14(1): 1511-1527

[14]

Hajiyev C. Fault tolerant integrated radar/inertial altimeter based on nonlinear robust adaptive Kalman filter. Aerosp Sci Technol, 2012, 17(1): 40-49

[15]

Julier SJ, Uhlmann JK, Durrant-Whyte HF. A new approach for filtering nonlinear systems. Proc Am Control Conf, 2002, 3: 1628-1632

[16]

Le HX, Matunaga S. A residual based adaptive unscented kalman filter for fault recovery in attitude determination system of microsatellites. Acta Astronautica, 2014, 105(1): 30-39

[17]

Li S, Li S, Pei R. Multiple sets of INS fault detection based on information fusion. Int Conf Electron Meas Instrum, 2011, 4: 81-85

[18]

Liang Y, Jia Y. A nonlinear quaternion-based fault-tolerant SINS/GNSS integrated navigation method for autonomous UAVs. Aerosp Sci Technol, 2015, 40: 191-199

[19]

Mohajerin Esfahani Peyman, Lygeros John. A Tractable Fault Detection and Isolation Approach for Nonlinear Systems With Probabilistic Performance. IEEE Transactions on Automatic Control, 2016, 61(3): 633-647

[20]

Nørgaard Magnus, Poulsen Niels K., Ravn Ole. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638

[21]

Nørgaard Magnus, Poulsen Niels K., Ravn Ole. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638

[22]

Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Wiltschko W. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J, 2009, 96(8): 3451-3457

[23]

Sun F, Song H, Gao W (2005) Study of SINS/GPS/DVL integrated navigation system's fault tolerance. Mechatronics and automation. 2005 IEEE international conference, IEEE, 737–767. https://doi.org/10.1109/icma.2005.1626585

[24]

Wang XH. Research on threshold selection principle based on sensor fault detection. Mech Eng Autom, 2009, 2: 105-106

[25]

Zhao B, Skjetne R, Blanke M, Dukan F. Particle filter for fault diagnosis and robust navigation of underwater robot. IEEE Trans Control Syst Technol, 2014, 22(6): 2399-2407

[26]

Zhen G, Feng S. Research on integrated navigation method for auv. J Mar Sci Appl, 2005, 4(2): 34-38

[27]

Zheng Q, Bian XQ. Simulation platform of navigation system for autonomous underwater vehicle. J Mar Sci Appl, 2006, 5(4): 33-37

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/