Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances

Mostafa Eslami , Cheng Siong Chin , Amin Nobakhti

Journal of Marine Science and Application ›› 2019, Vol. 18 ›› Issue (2) : 213 -227.

PDF
Journal of Marine Science and Application ›› 2019, Vol. 18 ›› Issue (2) : 213 -227. DOI: 10.1007/s11804-018-0037-1
Research Article

Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances

Author information +
History +
PDF

Abstract

A dynamic model of a remotely operated vehicle (ROV) is developed. The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX™ and WAMIT™. A sliding-mode controller (SMC) is then designed for the ROV model. The controller is subsequently robustified against modeling uncertainties, disturbances, and measurement errors. It is shown that when the system is subjected to bounded uncertainties, the SMC will preserve stability and tracking response. The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.

Keywords

Remotely operated vehicle / Robust modeling / Sliding-mode control / Simulation / Disturbances / Parametric uncertainties

Cite this article

Download citation ▾
Mostafa Eslami, Cheng Siong Chin, Amin Nobakhti. Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances. Journal of Marine Science and Application, 2019, 18(2): 213-227 DOI:10.1007/s11804-018-0037-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antonelli G, Chiaverini S, Sarkar N, West M. Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans Control Syst Technol, 2001, 9(5): 756-765

[2]

Burkan R, Uzmay I. Upper bounding estimation for robustness to the parameter uncertainty in trajectory control of robot arm. Robot Auton Syst, 2003, 45(2): 99-110

[3]

Caccia M, Indiveri G, Veruggio G. Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE J Ocean Eng, 2000, 25(2): 227-240

[4]

Calvo O, Sousa A, Rozenfeld A, Acosta G (2009) Smooth path planning for autonomous pipeline inspections. 6th International Multi-Conference on Systems, Signals and Devices SSD’09, pp 1–9. https://doi.org/10.1109/SSD.2009.4956800.

[5]

Chiaverini S, Antonelli G, Caccavale F. Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach. IEEE Trans Robot Autom, 2004, 20(3): 594-602

[6]

Chin CS, Lin WP. Robust genetic algorithm and fuzzy inference mechanism embedded in sliding-mode controller for uncertain underwater robot. IEEE/ASME Trans Mechatronics, 2018, 23(2): 655-666

[7]

Chin CS, Lau MWS, Low E. Supervisory cascaded controller design: experiment test on a remotely operated vehicle. Proc Inst Mech Eng C J Mech Eng Sci, 2011, 225(3): 584-603

[8]

Curti HJ, Acosta GG, Calvo OA (2005) Autonomous underwater pipeline inspection in autotracker project: the simulation module. In Oceans 2005-Europe, volume 1, 384–388. https://doi.org/10.1109/OCEANSE.2005.1511745.

[9]

Effatnejad K, Namvar M (2009) Adaptive robust control of robot manipulators subject to input-dependent uncertainties. 4th IEEE Conference on Industrial Electronics and Applications, pp 3428–3433. https://doi.org/10.1109/ICIEA.2009.5138838

[10]

Ferziger JH, Perić M. Computational methods for fluid dynamics, volume 3, 2002, Berlin: Springer ISBN 978-3-642-56026-2

[11]

Fossen TI (1994) Guidance and control of ocean vehicles. Wiley ISBN: 978-0-471-94113-2

[12]

Islam S, Liu XP. Robust sliding mode control for robot manipulators. IEEE Trans Ind Electron, 2011, 58(6): 2444-2453

[13]

Jordán MA, Bustamante JL. Numerical stability analysis and control of umbilical–ROV systems in one-degree-of-freedom taut–slack condition. Nonlinear Dynamics, 2007, 49(1–2): 163-191

[14]

Khalil HK. Nonlinear systems, volume 3. Prentice hall Upper Saddle River, 2002, ISBN-13: 978-0130673893

[15]

Koh TH, Lau MWS, Low E, Seet G, Swei S, Cheng PL. Development and improvement of an underactuated underwater robotic vehicle, OCEANS ‘02 MTS. IEEE, 2002, 4: 2039-2044

[16]

Liang X, Wang H, Liu YH, Chen W, Hu G, Zhao J. Adaptive task-space cooperative tracking control of networked robotic manipulators without task-space velocity measurements. IEEE Trans Cybern, 2016, 46(10): 2386-2398

[17]

McLain TW and Rock SM (1996) Experiments in the hydrodynamic modeling of an underwater manipulator. Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, pp 463–469. https://doi.org/10.1109/AUV.1996.532448.

[18]

Medina YV, Tkachova AF, Santana LH, Entenza PJP. Yaw controller in sliding mode for underwater autonomous vehicle. IEEE Lat Am Trans, 2016, 14(3): 1213-1220

[19]

Monroy JA, Campos E, Torres JA. Attitude control of a micro AUV through an embedded system. IEEE Lat Am Trans, 2017, 15(4): 603-612

[20]

Nicholas LT, Valladarez D, Toit NED (2015) Robust adaptive control of underwater vehicles for precision operations. In OCEANS 2015 - MTS/IEEE. https://doi.org/10.23919/OCEANS.2015.7404364

[21]

Qiao L, Zhang W. Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles. IET Control Theory Appl, 2017, 11(8): 1293-1306

[22]

Shen C, Buckham B, Shi Y. Modified C/GMRES algorithm for fast nonlinear model predictive tracking control of AUVs. IEEE Trans Control Syst, 2017, 25(5): 1896-1904

[23]

Shen C, Shi Y, Buckham B. Integrated path planning and tracking control of an AUV: a unified receding horizon optimization approach. IEEE/ASME Trans Mechatronics, 2017, 22(3): 1163-1173

[24]

Shi Y, Shen C, Fang H, Li H. Advanced control in marine mechatronic systems: a survey. IEEE/ASME Trans Mechatronics, 2017, 22(3): 1121-1131

[25]

Skogestad S, Postlethwaite I. Multivariable feedback control: analysis and design, 2005, 2, Hoboken: Wiley, ISBN: 978-0-470-01167-6

[26]

Slotine JJE, Li W. Applied nonlinear control, volume 199, 1991, New Jersey: Prentice Hall, ISBN-13: 978–0130408907

[27]

Tang C, Wang Y, Wang S, Wang R, Tan M. Floating autonomous manipulation of the underwater biomimetic vehicle-manipulator system: methodology and verification. IEEE Trans Ind Electron, 2018, 65(6): 4861-4870

[28]

Valdovinos LGG, Jimenez TS, Rodriguez HT (2009) Model-free high order sliding mode control for rov: station-keeping approach. In OCEANS 2009, MTS/IEEE Biloxi—marine technology for our future: global and local challenges, pp 1–7. https://doi.org/10.23919/OCEANS.2009.5422455

[29]

Vasilijevic A, Nad D, Mandic F, Miskovic N, Vukic Z. Coordinated navigation of surface and underwater marine robotic vehicles for ocean sampling and environmental monitoring. IEEE/ASME Trans Mechatronics, 2017, 22(3): 1174-1184

[30]

Vázquez AJM, Rodríguez HR, Vega VP, Orta AS. Fractional sliding mode control of underwater rovs subject to non-differentiable disturbances. Int J Control Autom Syst, 2017, 15: 1314-1321

[31]

Williams C, Mackay M, Perron C, Muselet C (2000) The NRC-IMD marine dynamics test facility: a six-degree-of freedom forced-motion apparatus for underwater vehicle testing. NRC Institute for Ocean Technology; National Research Council Canada, IR-1999-28

[32]

Wilson R, Paterson E, Stern F (2006) Unsteady rans CFD method for naval combatant in waves. Proceedings of the 22nd ONR Symposium on Naval Hydrodynamics, pp 532–549. https://doi.org/10.1002/fld.183

[33]

Yin Y, Hayakawa Y, Ogata K, Hosoe S (2003) A nonlinear adaptive robust control design for robotic systems under time-varying parameter perturbation and external disturbance. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2767–2772. https://doi.org/10.1109/IROS.2003.1249289

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/