Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

S. M. Zadeh , D. M. W. Powers , K. Sammut , A. M. Yazdani

Journal of Marine Science and Application ›› 2016, Vol. 15 ›› Issue (4) : 463 -477.

PDF
Journal of Marine Science and Application ›› 2016, Vol. 15 ›› Issue (4) : 463 -477. DOI: 10.1007/s11804-016-1382-6
Article

Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

Author information +
History +
PDF

Abstract

Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle’s mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

Keywords

autonomous vehicles / underwater missions / evolutionary algorithms / biogeography-based optimization / route planning· computational intelligence

Cite this article

Download citation ▾
S. M. Zadeh, D. M. W. Powers, K. Sammut, A. M. Yazdani. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management. Journal of Marine Science and Application, 2016, 15(4): 463-477 DOI:10.1007/s11804-016-1382-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carroll KP, McClaran SR, Nelson EL, Barnett DM, Friesen DK, Williams GN. AUV path planning: an A* approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones. IEEE Conference of Autonomous Underwater Vehicle Technology, 1992

[2]

Geisberger R. Advanced route planning in transportation networks, 2011, Karlsruhe: Karlsruhe Institute of Technology, 1-227

[3]

Jan GE, Chang KY, Parberry I. Optimal path planning for mobile robot navigation. IEEE/ASME Transactions on Mechatronics, 2008, 13(4): 451-460

[4]

Ji M, Yu X, Yong Y, Nan X, Yu W. Collision-avoiding aware routing based on real-time hybrid traffic information. Journal of Advanced Materials Research, 2012, 396-398: 2511-2514

[5]

Karimanzira D, Jacobi M, Pfuetzenreuter T, Rauschenbach T, Eichhorn M, Taubert R, Ament C. First testing of an AUV mission planning and guidance system for water quality monitoring and fish behavior observation in net cage fish farming. Information Processing in Agriculture, 2014, 1(2): 131-140

[6]

Koay TB, Chitre M. Energy-efficient path planning for fully propelled AUVs in congested coastal waters. IEEE OCEANS'13 Bergen, Bergen, 2013

[7]

Kladis GP, Economou JT, Knowles K, Lauber J, Guerra TM (2011). Energy conservation based fuzzy tracking for unmanned aerial vehicle missions under a priori known wind information. Engineering Applications of Artificial Intelligence, 24(2), 278–294.

[8]

Kruger D, Stolkin R, Blum A, Briganti J. Optimal AUV path planning for extended missions in complex, fast flowing estuarine environments. IEEE International Conference on Robotics and Automation, Roma, 2007

[9]

Zadeh S, Powers D, Sammut K, Lammas A, Yazdani AM. Optimal route planning with prioritized task scheduling for AUV missions. IEEE International Symposium on Robotics and Intelligent Sensors, 2015, 7-15

[10]

M.Zadeh S, Powers D, Yazdani AM. A novel efficient task-assign route planning method for AUV guidance in a dynamic cluttered environment. IEEE Congress on Evolutionary Computation (CEC), 2016

[11]

M.Zadeh S, Powers MWD, Sammut K, Yazdani AM. Differential evolution for efficient AUV path planning in time variant uncertain underwater environment, 2016

[12]

M.Zadeh S, Yazdani A, Sammut K, Powers DMW, 2016c. AUV rendezvous online path planning in a highly cluttered undersea environment using evolutionary algorithms. robotics (cs.RO). arXiv:1604.07002

[13]

M.Zadeh S, Powers DMW, Sammut K, Yazdani A. Toward efficient task assignment and motion planning for large scale underwater mission, 2016

[14]

Nikolos IK, Valavanis KP, Tsourveloudis NC, Kostaras AN. Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man, Cybern. B, Cybern., 2003, 33(6): 898-912

[15]

Simon D. Biogeography-based optimization. IEEE Transaction on Evolutionary Computation, 2008, 12: 702-713

[16]

Tam C, Bucknall R, Greig A. Review of collision avoidance and path planning methods for ships in close range encounters. Journal of Navigation, 2009, 62(3): 455-476

[17]

Volf P, Sislak D, Pechoucek M. Large-scale high-fidelity agent based simulation in air traffic domain. Cybernetics and Systems, 2011, 42(7): 502-525

[18]

Warren CW. Technique for autonomous underwater vehicle route planning. IEEE Journal of Oceanic Engineering, 1990, 15(3): 199-204

[19]

Willms AR, Yang SX. An efficient dynamic system for real-time robot-path planning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(4): 755-766

[20]

Yilmaz NK, Evangelinos C, Lermusiaux PFJ, Patrikalakis NM. Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE Journal of Oceanic Engineering, 2008, 33(4): 522-537

[21]

Zhu W, Duan H. Chaotic predator–prey biogeography-based optimization approach for UCAV path planning. Journal of Aerospace Science and Technology, 2014, 32(1): 153-161

[22]

Zou L, Xu J, Zhu L. Application of genetic algorithm in dynamic route guidance system. Journal of Transportation Systems Engineering and Information Technology, 2007, 7(3): 45-48

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/