A finite volume algorithm based on overlapping meshes for simulation of hydrodynamic problems

Roozbeh Panahi , Mehdi Shfieefar

Journal of Marine Science and Application ›› 2009, Vol. 8 ›› Issue (4) : 281 -290.

PDF
Journal of Marine Science and Application ›› 2009, Vol. 8 ›› Issue (4) : 281 -290. DOI: 10.1007/s11804-009-8082-4
Article

A finite volume algorithm based on overlapping meshes for simulation of hydrodynamic problems

Author information +
History +
PDF

Abstract

A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.

Keywords

interfacial flow / fluid-structure interaction / wave tank

Cite this article

Download citation ▾
Roozbeh Panahi, Mehdi Shfieefar. A finite volume algorithm based on overlapping meshes for simulation of hydrodynamic problems. Journal of Marine Science and Application, 2009, 8(4): 281-290 DOI:10.1007/s11804-009-8082-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ferziger J., Peric M. Computational methods for fluid dynamics[M]. 2002, 3, Berlin: Springer-Verlag

[2]

Ubbink O., Issa R. I. A method for capturing sharp fluid interfaces on arbitrary meshes[J]. Journal of Computational Physics, 1999, 153(1): 26-50

[3]

Panahi R., Jahanbakhsh E., Seif M. S. Development of a VoF fractional step solver for floating body motion simulation[J]. Applied Ocean Research, 2006, 28(3): 171-181

[4]

CHENTANEZ N, GOKTEKIN T G, FELDMAN B E, O’BRIEN J F. Simultaneous coupling of fluids and deformable bodies[C]//CANI M P and O’BRIEN J F. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Vienna, Austria, 2006: 83–89.

[5]

Tremel U., Sorensen K. A., Hitzel S., Riger H., Hassan O., Weatherill N. P. Parallel remeshing of unstructured volume grids for CFD applications[J]. International Journal for Numerical Methods in Fluids, 2007, 53(8): 1361-1379

[6]

Blades E., Marcum D. L. A sliding interface method for unsteady unstructured flow simulations[J]. International Journal for Numerical Methods in Fluids, 2007, 53: 507-529

[7]

Carrica P. M., Wilson R. V., Noack R. W., Stern F. Ship motions using single-phase level set with dynamic overset grids[J]. Computers & Fluids, 2007, 36(9): 1415-1433

[8]

Mittal M., Iaccarino G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261

[9]

Jahanbakhch E., Panahi R., Seif M. S. Numerical simulation of three-dimensional interfacial flows[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(4): 384-404

[10]

Jasak H. Error analysis and estimation for finite volume method with application to fluid flows[D]. 1996, London: University of London

[11]

Rhie C.M., Chow W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation [J]. AIAA Journal, 1983, 21: 1525-1532

[12]

Kim D., Choi H. A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids[J]. Journal of Computational Physics, 2000, 162(2): 411-428

[13]

Togashi F., Nakahashi K., Ito Y., Iwamiyata T., Shimbo Y. Flow simulation of NAL experimental supersonic airplane/booster separation using overset unstructured grids[J]. Computers and Fluids, 2001, 30(6): 673-688

[14]

Hadzic H. Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids[D]. 2005, Hamburg: Teschniche Universitat Hamburg-Harburg

[15]

ATTA E H. Component adaptive grid interfacing[J]. AIAA Paper, 1981, 81–0382.

[16]

BUNING P G, WONG T C, DILLEY A D, PAO J L. Prediction of hyper-x stage separation aerodynamics using CFD[J]. AIAA Paper, 2000, 2000–4009.

[17]

Chen H. C., Lin W. M., Hwang W. Y., Purtell L. P. Validation and application of chimera RANS method for ship-ship interactions in shallow water and restricted waterway[C]. 24th ONR Symposium on Naval Hydrodynamics, 2003, Michigan: National Academy Press

[18]

Nakahashi K., Togashi F., Sharov D. An intergrid-boundary definition method for overset unstructured grid approach[J]. AIAA Journal, 2000, 38(11): 2077-2084

[19]

MEAKIN R L. Object X-rays cutting holes in composite overset structured grids[J]. AIAA Paper, 2001, 2001–2537.

[20]

SUHS N E, ROGERS S E, DIETZ W E. PEGASUS: An Automated pre-processor for overset grid CFD[J]. AIAA Paper, 2002, 2002–3186.

[21]

Löhner R. Robust, vectorized search algorithms for interpolation on unstructured grids[J]. Journal of Computational Physics, 1995, 118(2): 380-387

[22]

Drakakis D., Majewski J., Rokichki J., Zoltak J. Investigation of blendingfunction-based overlapping-grid technique for compressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 5173-5195

[23]

Panahi R., Jahanbakhsh E., Seif M. S., Delhommeau G., Visonneau M. Numerical investigation on the effect of baffle arrangement in tanker sloshing[C]. 9th Numerical Towing Tank Symposium (NuTTs), 2006, Nantes: Ecole Centrale de Nantes

[24]

Jahanbakhsh E., Panahi R., Seif M. S. Catamaran motion simulation based On moving grid technique[J]. Journal of Marine Science and Technology, 2009, 17(2): 128-136

[25]

Schäfer M., Turek S. Benchmark computations of laminar flow around a cylinder[J]. Notes on Numerical Fluid Mechanics, 1996, 52: 547-566

[26]

Tanizawa K., Clément A. H., Chung J. S., Frederking R. M. W., Saeki H., Koterayama W. Report of the 2nd workshop of ISOPE numerical wave tank group: benchmark test cases of radiation problem[C]. 10th International Offshore and Polar Engineering Conference [C]. 2000, Cupertino: ISOPE

[27]

Park J. C., Miyata H. Numerical simulation of fully-nonlinear wave motions around arctic and offshore structures[J]. Journal of the Society of Naval Architects of Japan, 2001, 189: 13-20

[28]

Greenhow M., Lin W. Nonlinear free surface effects: experiments and theory[R]. 1983, Cambridge: Massachusetts Institute of Technology, Department of Ocean Engineering

[29]

Xing-kaeding Y. Unified approach to ship seakeeping and maneuvering by a RANSE method[D]. 2004, Hamburg: Teschnichen Universitat Hamburg-Harburg

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/