2025-04-09 2007, Volume 14 Issue 6

  • Select all
  • Qiu-mei Wu , Jian-ming Ruan , Bai-yun Huang , Zhong-cheng Zhou , Jian-peng Zou

    The viscoelastic properties of the suspension of monodisperse spherical silica produced by hydrolysis of tetraethoxysilane in alcohol solvent with ammonia as a catalyst in polyethylene glycol (PEG) were studied. The results show that the SiO2/PEG suspension possesses the reversible shear thinning and shear thickening behaviors. In the shear thinning region, the loss modulus (G″) almost remains unchanged, whereas the storage modulus (G′) decreases. In the shear thickening region, G″ and G′ increase for the formation of the “clusters”. The larger G″ over G′ in all the stress studied shows that the system mainly possesses the viscous property, and that the energy dissipated(Ed) is larger than that stored. Ed of this suspension is proportional to the maximum strain (γmax) rising with the exponent of 1.92 under low shear stress; however, in the shear thickening region, Ed is proportional to γmax rising with the exponent of 5.00.

  • Yuan-dong Liu , Jian-nan Ding , Guan-zhou Qiu , Hai-dong Wang

    The gene iscS-3 from Acidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5′-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glu105, Glu79, Ser203 and His180 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.

  • Guo-jung Zhou , Hua-shan Liu , Li-bin Liu , Zhan-peng Jin

    The isothermal section of Ag-Ti-Zr ternary system at 1023 K was determined by diffusion triple and electron probe microanalysis. The results indicate that four binary intermetallic phases of AgTi, AgTi2, AgZr and AgZr2 are found in Ag-Ti-Zr ternary system at 1 023 K. AgZr2 and AgTi2 form a continuous solid solution, namely Ag(Ti,Zr)2. Four three-phase regions: AgTi + AgZr + Ag, AgTi + AgZr + Ag (Ti, Zr)2, α-Zr+β(Ti, Zr) + Ag (Ti, Zr)2 and α-Ti + β(Ti, Zr) + Ag (Ti, Zr)2 exist in the isothermal section. No ternary compound is observed.

  • Zhi-hua Li , Yu-peng Ke , Dong-yan Ren , Zi-qiao Zheng

    Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate (TDE-85)/methyl tetrahydro-phthalic anhydride (MeTHPA) epoxy resin was modified by polyurethane(PU), and its structural characteristics and properties were studied by infrared spectrum analysis (IR), scanning electronic microscopy (SEM), mechanics testing and thermogravimetric analysis (TG). The results indicate that epoxy polymeric network I and polyurethane polymeric network II are formed in the PU-modified TDE-85/MeTHPA epoxy resin. Meanwhile the PU-modified TDE-85/MeTHPA resins have heterogeneous structure. The miscibility between epoxy (EP) and polyurethane (PU) as well as the phase size are dominantly determined by the mass fraction of polyurethane prepolymer (PUP) in the EP/PU blends. With the increase of PUP mass fraction, the tensile strength, impact strength and thermal stability of the PU-modified TDE-85/MeTHPA epoxy resin all firstly exhibit increasing tendency, and decrease after successively reaching their maxima. When the number-average molecular mass of PPG is 1 000 and the mass fraction of PUP is 15%, the tensile strength, impact strength and thermal stability of materials obtained, compared with TDE-85/MeTHPA epoxy resin, are improved obviously.

  • Yu-dong Lu , Xin Wang , Zhi-qiang Zhuang

    BaPbO3 thin films were deposited on Al2O3 substrates by sol-gel spin-coating and rapid thermal annealing. The microstructure and phase of BaPbO3 thin films were determined by X-ray diffractometry, scanning electrons microscopy and energy dispersive X-ray spectrometry. The influence of annealing temperature and annealing time on sheet resistance of the thin films was investigated. The results show that heat treatment, including annealing temperature and time, causes notable change in molar ratio of Pb to Ba, resulting in the variations of sheet resistance. The variation of electrical properties demonstrates that the surface state of the film changes from two-dimensional behavior to three-dimensional behavior with the increase of film thickness. Crack-free BaPbO3 thin films with grain size of 90 nm can be obtained by a rapid thermal annealing at 700 °C for 10 min. And the BaPbO3 films with a thickness of 2.5 μm has a sheet resistance of 35 Θ·□−1.

  • Jian-feng Zhang , Yue-hua Hu , Dian-zuo Wang , Jin Xu

    Phenoxyl acetic acids were applied to determine their depressing effect on minerals containing Ca2+/Mg2+ gangues. Calcite, mixture of calcite and fluorite, and nickel ore were used in the flotation. And the depression mechanism was studied by the determination of contact angle, zeta potential, adsorptive capacity of collector, and IR analysis as well. It is found that 0.1 mmol/L of phenoxyl acetic acid derived from pyrogallol or gallic acid exhibits strong depressing ability on calcite in almost zero yields at pH value of 9.8, and calcite can be depressed in the flotation of calcite/fluorite mixture for approximate 87% yield of fluorite. The flotation result of practical nickel ore containing serpentine indicates that these two depressants may also show better depression performance to serpentine than traditional depressants such as sodium fluosilicate and carboxylmethyl ceullulose. Analysis for the depression mechanism reveals that there exists strong chemical interaction between the depressants and minerals.

  • Jia-wei Wang , Yan-qing Lai , Zhong-liang Tian , Ye-xiang Liu

    5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 °C. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.

  • Jin Xiao , Qi Qin , Ye Wan , Feng Zhou , Yan-bin Chen , Jie Li , Ye-xiang Liu

    Ultrafine alumina power was obtained by calcining the precursor at 1 200 °C for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2–3 μm.

  • Xiang-yang Zhou , Chang-lin Li , Deng-wei Huo , Jie Li , Shang-yuan Wu , Ye-xiang Liu

    The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 °C, but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide.

  • Wei Liu , Jie Li , Yan-qing Lai , Ye-xiang Liu

    Based on the principle of energy conservation, the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to compute iteratively the freeze profile until the thickness variable reached the terminating requirement. The calculated 2D heat dissipation from the cell surfaces was converted into the overall 3D heat loss. The potential drop of the system, freeze profile and heat balance were analyzed to evaluate their variation with technical parameters when designing the 150 kA conventional cell based drained cell. The simulation results show that the retrofitted drained cell is able to keep thermal balance under the conditions that the current is 190 kA, the anodic current density is 0.96 A/cm2, the anode-cathode distance is 2.5 cm, the alumina cover is 16 cm thick with a thermal conductivity of 0.20 W/(m·°C) and the electrolysis temperature is 946 °C.

  • Hai-xia Tong , Qi-yuan Chen , Hui-ping Hu , Zhou-lan Yin , Jie Li , Jian-liang Zhou

    TiO2/Nb2O5 photocatalyst loaded with WO3 (WO3-TiO2/Nb2O5) was prepared by a modified hydrolysis process, and characterized by X-ray diffractometry, transmission electron microscopy, Raman spectra and UV-Vis diffuse refraction spectroscopy. The photocatalytic activity of WO3-TiO2/Nb2O5 was investigated by employing splitting of water for O2 evolution. The results indicate that WO3 loading can pronouncedly improve the photocatalytic activity of TiO2/Nb2O5 by using Fe3+ as an electron acceptor under UV irradiation. The optimum molar fraction of the loaded WO3 is 2%, and the largest speed of O2 evolution for 2% WO3-TiO2/Nb2O5 catalyst is 151.8 µmol/(L·h).

  • Feng-liang Liu , Yuan-jian Li , Ke-long Huang , Zhen Xiao

    The amino acid Schiff base complex (Sal-AMBA-Mn) was prepared with p-amino-methylbenzoic acid, salicylaldehyde and Mn(OAc)2·4H2O. Its structures was characterized with IR and UV spectra. Oxygenation mechanism of the complex in N, N-dimethylformamide solution was investigated. The results show that lower temperature is in favor of the oxygenation, and energy, enthalpy and entropy are −3.8 kJ/mol, −4.2 J/mol and −161.44 J/(mol·K), respectively. In the presence of the manganese complex, dehydroepiandrosterone acetate is effectively oxidized by molecular oxygen and the corresponding enone 7-ketodehydroepiandrosterone acetate is obtained. The yield is 62.1% when the oxidation is carried out under the reaction conditions of 60 °C, 2 MPa of O2 pressure, C5H5N as a solvent and molar ratio of the substrate to the complex of 1:10.

  • Jian-min Yi , Sai-jin Huang , Ke-wen Tang , Ke-long Huang

    A series of extractants (tert-butylcalix[6]arene, tert-butylcalix[8]arene and octeacetate of tert-butylcalix[8]arene) were synthesized, and their structures were identified by IR and 1H-NMR. The distribution behavior of ester catechins monomer in the aqueous and chloroform two-phase system containing one of calixarene was studied. The influences of different extractants, concentration of tert-butylcalix[8]arene and extraction temperature on the partition coefficients and the separation factors were investigated. The experiment results show that tert-butylcalix[8]arene is the best extractant that forms a more stable supramolecular compound with gallocatechin gallate (GCG) than with epigallocathechin gallate (EGCG) or epicatechin gallate (ECG). When the concentration of p-tert-butylcalix[8]arene is 3.79 mmol/L, the extraction temperature is 4 °C, the partition coefficients of KGCG, KECG, KEGCG are 0.987, 0.629, 0.449, the separation factors of a1 and a2 are 1.450 and 1.596, respectively. The important factors influencing the extraction properties of calixarene are discovered to be its cavity size and hydrogen bonding.

  • Hua-ping Tang , Chun-xi Tang , Chen-feng Yin

    A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.

  • Gang Wang , Shao-jun Liu , Li Li

    3D dynamic analysis models of 1000 m deep-ocean mining pipeline, including steel lift pipe, pump, buffer and flexible hose, were established by finite element method (FEM). The coupling effect of steel lift pipe and flexible hose, and main external loads of pipeline were considered in the models, such as gravity, buoyancy, hydrodynamic forces, internal and external fluid pressures, concentrated suspension buoyancy on the flexible hose, torsional moment and axial force induced by pump working. Some relevant FEM models and solution techniques were developed, according to various 3D transient behaviors of integrated deep-ocean mining pipeline, including towing motions of track-keeping operation and launch process of pipeline. Meanwhile, an experimental verification system in towing water tank that had similar characteristics of designed mining pipeline was developed to verify the accuracy of the FEM models and dynamic simulation. The experiment results show that the experimental records and simulation results of stress of pipe are coincided. Based on the further simulations of 1 000 m deep-ocean mining pipeline, the simulation results show that, to form configuration of a saddle shape, the total concentrated suspension buoyancy of flexible hose should be 95%–105% of the gravity of flexible hose in water, the first suspension point occupies 1/3 of the total buoyancy, and the second suspension point occupies 2/3 of the total buoyancy. When towing velocity of mining system is less than 0.5 m/s, the towing track of buffer is coincided with the setting route of ship on the whole and the configuration of flexible hose is also kept well.

  • Xiao-hua Cao , Xiao-ling Cao , Shao-jian Jiang , Ming Su

    In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid’s wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.

  • Zhong-hua Huang , Shao-jun Liu , Bo Jin , Li Li , Ying Chen

    A new sampling method of deepsea microplankton with function of in-situ concentrated sampling and gastight sampling was proposed. In-situ concentrated sampling technique was realized as follows: a microplankton membrane was used as filtration membrane, and a deepsea pump was used to pump seawater; the microplankton was captured and the density of microplankton was increased when seawater flow through the filtration membrane. Gastight sampling technique was realized as follows: a precharged accumulator was used as pressure compensator. During the process of lifting the sampler, the accumulator compensated the pressure drop continuously. The laboratory experimental results show that with in-situ concentrated sampling technique, in-situ concentrated sampling can be realized and the maximum concentration ratio reaches up to 500. With pressure compensation technique based on accumulator, gastight sampling can be realized. When sampling at 6 km and the precharge pressure of accumulator is 18 MPa, pressure drop of the sample is less than 2% compared with its original pressure. Deepsea experiment (at 1.9 km) results show that the sampler can realize in-situ concentrated sampling and gastight sampling.

  • Ke-an Li , Han Xiao , Rong-fan Cui

    A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.

  • Miao-Lei Zhou , Yan-tao Tian , Wei Gao , Zhi-gang Yang

    A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%.

  • Jin-zhi Liu , Ai-xiang Wu , Bao-hua Yang , Huai-chun Jiang

    Solute transmission in saturated ore heap was studied numerically and experimentally. The convection-diffusion equation (CDE) used to describe the mass transportation in porous media was solved by characteristic difference method to give the distribution of the concentration of ferrous ion in the ore column. To calibrate the computational model, a column test was performed using infiltration of sulfide ferrous solution (the initial concentration is c0 = 0.04 mol/L) on a 100 cm high column composed of ore particles smaller than 10 mm for 2.5 h. The numerical analysis shows that the results obtained from numerical modeling under the same operating conditions as used for column test are in good agreement with those from experimental procedure on the whole trend, which indicates that the model, the numerical method, and the parameters chosen can reflect the rule of ferrous ion transmission in ore heap.

  • Xiao-li Yang , Nai-zheng Guo , Lian-heng Zhao , Jin-feng Zou

    Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity.

  • Xue-min Wang , Fang-lin Huang , Guang Ma , Jian-jun Liu

    According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong disturbance was decomposed into a series of intrinsic mode functions (IMFs) and a residue by the empirical mode decomposition (EMD). The instantaneous amplitudes and frequencies of each IMF were calculated. And at abnormal section, instantaneous amplitudes and frequencies were fitted according to the data at normal section, replacing the fitted data for the original ones. A new set of IMFs was reconstructed by using the processed instantaneous amplitudes and frequencies. For the residue, abnormal fluctuations could be directly eliminated. And a new signal with the short-time strong disturbance eliminated was reconstructed by superposing all the new IMFs and the residue. The numerical simulation shows that there is a good correlation between the reconstructed signal and the undisturbed signal. The correlation coefficient is equal to 0.999 1. The processing results of the measured strain signal of a bridge with short-time strong disturbance verify the practicability of the method.

  • Ming-hua Zhao , Wei He , Hong-hua Wang

    The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.

  • Xin-jun Zou , Ming-hua Zhao , Guang-dong Liu

    In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and are length method was worked out as well. The application results in an engineering example show that, the shape of pile top load—settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.

  • Wen-gui Cao , Yong-jie Zhang , Ming-hua Zhao

    Randomness and fuzziness are among the attributes of the influential factors for stability assessment of pile foundation. According to these two characteristics, the triangular fuzzy number analysis approach was introduced to determine the probability-distributed function of mechanical parameters. Then the functional function of reliability analysis was constructed based on the study of bearing mechanism of pile foundation, and the way to calculate interval values of the functional function was developed by using improved interval-truncation approach and operation rules of interval numbers. Afterwards, the non-probabilistic fuzzy reliability analysis method was applied to assessing the pile foundation, from which a method was presented for nonprobabilistic fuzzy reliability analysis of pile foundation stability by interval theory. Finally, the probability distribution curve of nonprobabilistic fuzzy reliability indexes of practical pile foundation was concluded. Its failure possibility is 0.91%, which shows that the pile foundation is stable and reliable.

  • Yong-hua Su , Peng Zhang , Ming-hua Zhao

    An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not iterative circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.

  • Xiao-ming Liu , Ming-hua Zhao , Yong-hua Su

    Slacking experiments were performed on the red beds weak rock from vicinity of Changsha. Grain size distribution of the slacking rock was tested periodically during the experiments, which can be used to describe the physical transition of red beds weak rock during slacking process. According to the similar characters of many attributions such as environmental moisture, mineralogical composition, grain size and other factors between big rocks before slacking and its slacked product, the self-similar property of big rock and the small one can be induced. Fractal concept was introduced to construct the slacking model of red beds weak rock. Combining the supposed relationship of time for slacking and grain size of weak rock, the mathematic simulation of slacking process of red beds weak rock was conducted. To simplify the parameters back calculation, the fractal model proposed by Tyler and Wheatcraft was introduced to describe the characters of grain size distribution variation. The results show that the fractal dimension calculated from simulation data meet experiments data closely, which proves that the mathematic simulation method is reasonable and the parameters determination method is effective.