Preparation, characterization and photocatalytic behavior of WO3-TiO2/Nb2O5 catalysts

Hai-xia Tong , Qi-yuan Chen , Hui-ping Hu , Zhou-lan Yin , Jie Li , Jian-liang Zhou

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (6) : 788 -792.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (6) : 788 -792. DOI: 10.1007/s11771-007-0150-9
Article

Preparation, characterization and photocatalytic behavior of WO3-TiO2/Nb2O5 catalysts

Author information +
History +
PDF

Abstract

TiO2/Nb2O5 photocatalyst loaded with WO3 (WO3-TiO2/Nb2O5) was prepared by a modified hydrolysis process, and characterized by X-ray diffractometry, transmission electron microscopy, Raman spectra and UV-Vis diffuse refraction spectroscopy. The photocatalytic activity of WO3-TiO2/Nb2O5 was investigated by employing splitting of water for O2 evolution. The results indicate that WO3 loading can pronouncedly improve the photocatalytic activity of TiO2/Nb2O5 by using Fe3+ as an electron acceptor under UV irradiation. The optimum molar fraction of the loaded WO3 is 2%, and the largest speed of O2 evolution for 2% WO3-TiO2/Nb2O5 catalyst is 151.8 µmol/(L·h).

Keywords

photocatalysis / load / oxygen evolution / rutile TiO2 / Nb2O5 / WO3

Cite this article

Download citation ▾
Hai-xia Tong, Qi-yuan Chen, Hui-ping Hu, Zhou-lan Yin, Jie Li, Jian-liang Zhou. Preparation, characterization and photocatalytic behavior of WO3-TiO2/Nb2O5 catalysts. Journal of Central South University, 2007, 14(6): 788-792 DOI:10.1007/s11771-007-0150-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FujishimaA., HondaK.. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38

[2]

HoffmanM. R., MartinS. T., ChoiW.. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69-96

[3]

KamatP. V.. Photochemistry on nonactive and reactive (semiconductor) surfaces[J]. Chem Rev, 1993, 93(1): 267-271

[4]

JuJ.-f., ShiL., LiC.-j., et al.. Preparation of TiO2-WO3 nanopowder and its photocatalysis for formaldehyde degradation[J]. Fine Chemicals, 2004, 21(3): 181-184

[5]

OhnoT., TanigawaF., FujiharaK., et al.. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder[J]. Photochemistry and Photobiology A: Chem, 1999, 127: 107-110

[6]

SangC. M., HiroakiM.. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2[J]. Catalysis Today, 2000, 58: 125-132

[7]

ChoiW. Y., TerminA., HoffmannM. R.. The role of metal-ion dopants in quantum-size TiO2-correlation between photoreactivity and charge-carrier recombination dynamics [J]. Phys Chem, 1994, 98(51): 13669-13679

[8]

ChengP., ZhengM. P., JinY. P.. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method[J]. Mater Letters, 2003, 57: 2989-2994

[9]

ZhangQ., LiX.-j., LiF.-b.. Effect of preparation process of WO3/TiO2 films on photo-catalytic activity under visible light[J]. The Chinese Journal of Nonferrous Metals, 2002, 16(12): 1299-1303

[10]

BenjaramM. R., PavaniM. S., EttireddyP. R.. Surface characterization of La2O3-TiO2 and V2O5/La2O3-TiO2 catalysts[J]. J Phys Chem, 2002, 106: 5695-5700

[11]

LiF.-b., GuG.-b., LiX.-j., et al.. Preparation of WO3/TiO2 nanopowder and its photocatalytic behavior[J]. Phys Chem Trans, 2000, 11(16): 997-1002

[12]

CaiN.-c., WangY.-p., CaoY.-liang.. A study of supported Pt-TiO2 photocatalyst[J]. Chinese Journal of Catalysis, 1999, 20(2): 7-18

[13]

BinX., LinD., YinF., YiC.. A study on the dispersion of NiO and/or WO3 on anatase of catal[J]. Journal of Catalysis, 2000, 193: 88-95

[14]

KazuhiroS., RintaroY., HitoshiK., et al.. Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system[J]. Chem Phys Lett, 1997, 277: 387-391

[15]

BenjaramM. R., BiswajitC.. X-ray photoelectron spectroscopy study of V2O5 dispersion on a nanosized Al2O3-TiO2 mixed oxide[J]. Langmuir, 2001, 17: 1132-1137

[16]

EngweilerJ., HarfJ., BaikerA.. Wox/TiO2 catalysts prepared by grafting of tungsten alkoxides: Morphological properties and catalytic behavior in the selective reduction of NO by NH3[J]. Journal of Catalysis, 1996, 159: 259-269

[17]

DoY. R., LeeK., DwightK.. The effect of WO3 on the photocatalytic activity of TiO2[J]. Journal of Solid State Chemistry, 1994, 108(1): 198-204

[18]

ChanS. S., WachsI. E., MurrelL. L.. Insitu laser Raman-spectroscopy of supported metal-oxides[J]. Phys Chem, 1984, 88(24): 5831-5835

[19]

RamanlN. C., SullivanD. L., EkerdtJ. G.. Selective oxidatio of 1-butene over silica-supported Cr(VI), Mo(VI), and W(VI) oxides[J]. Catal, 1998, 176: 143-154

[20]

ScholzA., SchnyderB., WokaunA.. Influence of calcinations treatment on the structure of grafted WOx species on titania[J]. Journal of Molecular Catalysis A: Chemical, 1999, 138: 249

[21]

HanW.-ping.Catalytic Chemistry Introduction[M], 2003, Beijing, Science Press: 272-310

[22]

ZhangQ., LiX.-j., LiF.-b., et al.. Investigation on visible-light activity of WOx/TiO2 photocatalyst[J]. Phys Chem Trans, 2004, 20(5): 507-511

[23]

HuangC.-y., YouW.-s., DangL.-q., et al.. Effect of Nd3+ doping on photocatalytic activity of TiO2 nanoparticles for water decomposition to hydrogen[J]. Chinese Journal of Catalysis, 2006, 3(27): 203-209

[24]

ZhangP.-y., YuG., JiangZ.-peng.. Review of semiconductor photocatalyst and its modification[J]. Advance in Environment Science, 1997, 5(3): 1-10

[25]

LiF.-b., GuG.-b., LiY.-jin.. Enhanced rates of photocatalytic behavior using WO3/TiO2 coupled semiconductor nanopowder[J]. Environment Science, 1999, 20(4): 75-78

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/