2025-04-09 2006, Volume 13 Issue 6

  • Select all
  • Shun-hua Cao , Zhi-yong Cai , Jian-hua Zhou , Jiong-yi Li , Xin-ping Lin

    A new process of WC-Co cemented carbide was developed by using nano-grained W(Co, C) composite powders as raw materials processed by high-energy ball milling. X-ray diffraction(XRD), differential thermal analysis (DTA), thermo-gravimetric (TG) analysis and coercive forces of the sintered samples were adopted to analyze the phase transformation and constitution, and the microstructures of sintered samples were characterized by scanning electron microscopy(SEM). The results show that the as-milled powders are transformed into transitional phases W2C and η (Co3W3C or Co6W6C) during sintering, and finally transformed into WC and Co phases completely at 1 250 °C for 30 min, and a large number of fibrous WC grains with about 1.2 μm in length and 100 nm in radial dimension are formed in the sintered body at 1 300 °C.

  • Zhi-hua Zhou , Jian-ming Ruan , Jian-peng Zou , Zhong-cheng Zhou , Xiong-jun Shen

    Poly-L-lactide(PLLA) was synthesized by ring-opening polymerization from high purity L-lactide with tin octoate as initiator, and characterized by means of infrared, and 1H-nuclear magnetic resonance. The influences of initiator concentration, polymerization temperature and polymerization time on the viscosity average molecular mass of PLLA were investigated. The effects of different purification methods on the concentration of initiator and viscosity average molecular mass were also studied. PLLA with a viscosity average molecular mass of about 50.5×104 was obtained when polymerization was conducted for 24 h at 140 °C with the molar ratio of monomer to purification initator being 12 000. After purification, the concentration of tin octoate decreases; however, the effect of different purification methods on the viscosity average molecular mass of PLLA is different, and the obtained PLLA is a typical amorphous polymeric material. The crystallinity of PLLA decreases with the increase of viscosity average molecular mass.

  • Sheng-fa Liu , Liu-gen Kang , Hui Han , Lin-yan Liu , Xiao-qiang Zou , Hong-he Guo

    Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites to fine rosette-like or spherical shape. Grain size is significantly refined within the range of input voltage 75–125 V, moreover, the optimum input voltage corresponded to the minimum value (64 μ m) of grain size is 125 V. Compared to the non-stirred condition, the amount of β-Mg17Al12 precipitate under the stirred condition obviously increases. The grain refinement of AZ91-0.8%Ce alloy is mainly attributed to multiplication of existing grains in the melt caused by forced fluid flow under electromagnetic stirring condition. Addition of 0.8% Ce results in the formation of ‘necking’ at secondary dendrite arm roots of α-Mg crystals, and consequently, it is helpful to increase the number of heterogeneous nucleation.

  • Zheng-hui Yang , Zhu-qing Gong , Hong-xu Li , Yu-tian Ma , Yu-Fang Yang

    Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite’s slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 °C) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200 °C is ln[-ln(1−x)] = −0.78+0.95ln t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials.

  • Gan-wei Cai , Ping-ping Chang , Cun-zhi Ma , Ru-gui Wang , Zhao-jun Li

    A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam element was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.

  • Zhao-hui Guo , Bo-han Liao , Chang-yong Huang

    Two acidic ferrisols, i.e., red soil (RS) and yellow red soil (YRS), from the vicinity regions of non-ferrous ores in Hunan province of China, were leached with simulated acid rain through artificial column experiments. The results show that the total leaching mass of metals are m(Zn)>m(Cu) >m(Cd) from the original soils and m(Cd)>m(Zn) >>m(Cu) from the contaminated soils with external metals after leaching for 60 d continuously, leaching quantities of Cd and Zn from the contaminated red soil (CRS) are more than that from the contaminated yellow red soil (CYRS), but for Cu, i is almost the same. The preferential fractions for leaching are mainly in exchangeable forms, and content of exchangeable forms decreases significantly in the contaminated soil profiles. The unstable fractions of Cd, Cu and Zn in the RS and YRS increase significantly with the decrease of pH value of simulated acid rain. Changes of fractions of external Cd, Cu, and Zn in the residual CRS and CYRS profiles are significantly affected by the acidity of acid rain, too. After leaching for 60 d continuously, Cd exists mostly in exchangeable form, Cu exists mainly in exchangeable, manganese oxide-occluded and organically bounding forms, and Zn exists in residual in CRS and CYRS profiles. Most of exchangeable Cd and Zn exist only small in surface layer (0–20 cm) and are transferred to the sub-layers, contrarily, Cu accumulates mostly in the topsoil (0–20 cm) with low translocation.

  • Wen-jie Peng , Yun-yan Wang

    Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are −0.113 8 V and −0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-determining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are −0.118 V and −0.039 4 V, respectively, consisting with the experimental values. Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.

  • Jin Xiao , Jian-feng Wang , Yong-dong Liu , Jie Li , Ye-xiang Liu

    Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25 ± 0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.

  • Feng-qin Liu , Ye-xiang Liu , U. Mannweiler , R. Perruchoud

    The properties and blending recipe of petroleum cokes used to make high quality carbon anodes for aluminium electrolysis were studied. Three kinds of green cokes were selected for bench scale study to illustrate the effects of cokes properties and its blending recipe on anode performances. The results show that impurities derived mainly from cokes remarkably affect the CO2 reactivity and air reactivity of carbon anodes. Ca, Na and V can increase CO2 reactivity of calcined cokes but S has the contrary effect, and the cokes of high V level generally present high air reactivity. The anodes with good quality can be made by properly selecting and scientifically blending of cokes, some poor quality cokes can also be used to produce high quality anodes with a reasonable blending recipe. Na contaminated anodes have high CO2 reactivity and air reactivity, so the recycled anode butts should be well cleaned to reduce Na content before being introduced into anode production, which is especially important to the low S cokes.

  • Hai-hui Zhou , Hong Chen , Jin-hua Chen , Ya-fei Kuang

    A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voltammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17 μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition of pH 5.5, 0.8 V and 65 °C.

  • Hong-mei Lu , Yi-zeng Liang , Wang-dong Ni , Rui-lin Man

    A uniform experimental design procedure was used to investigate the effects of some operating parameters on the extraction of emodin from Polygonum cuspidatum Sieb. et Zucc. products. Variables tested were volume ratio of material to solvent, size of material, extraction time and temperature and composition of extraction solvent (mixtures of acetone-water). Each variable was tested at seven levels; 7 experiments were performed in random order. Analyses of the extracts were performed by high-performance liquid chromatography with diode array detection(HPLC-DAD). Analytical responses were processed by using a forward regression analysis, in order to find polynomial function describing the relationship between variables and responses. For all the analytes the experimental conditions for providing the highest extraction yield inside the experimental domain considered were found. Finally, a simple, rapid and accurate analytical method was developed for the determination of emodin by high performance liquid chromatography. The separation is achieved within 25 min on an ODS column using methanol and water as gradient mobiles. Emodin can be quantified by using external standard method detecting at 436 nm. Good linearity is obtained with correlation coefficient exceeding 0.9986 and the detection limit and the quantification limit are 1.53 and 3.23 mg/L respectively. This method shows good reproducibility for the quantification of the emodin with intra-day and inter-day relative standard deviation less than 2.3% and 5.6% respectively. Under optimized extraction conditions, the recovery of the standard is 96.5%. The validated method is successfully applied to quantify the emodin in seven Polygonum cuspidatum sieb. Et zucc. products, which provided an idea for the pre-treatment of determination of active compounds in traditional Chinese medicines.

  • Hong-guo Zhang , Shao-qi Zhou

    Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment. Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%, 74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. The demand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the influent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.

  • Xiao-rong Liu , Guan-zhou Qiu , Yue-hua Hu

    The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles containing such hydrophilic groups as carbonyl, carboxyl, sulphonyl or acylamine exist in organic phase. Conclusively, Lix984N would degrade gradually during a long-term contact with the acidic aqueous feed and strip reagents. Lix84 and nonylphenol as effective components of Lix984N degraded almost completely after long-term recycling. Lix984N degraded through such reactions as Beckmann rearrange, hydrolysis and sulphofication. The degradation of Lix984N would deteriorate solvent extraction and disengagement performance, and result in a more stable interfacial emulsion.

  • Yong-shi Jin , Tao Jiang , Yong-bin Yang , Qian Li , Guang-hui Li , Yu-feng Guo

    Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids were used for the preparation of leach solutions. The results show that phosphorus occurring as apatite phase could be removed by alkali-leaching, but those occurring in the iron phase could not. Sulfuric acid is the most effective among the three kinds of acid. 91.61% phosphorus removal was attained with 1% sulfuric acid after leaching for 20 min at room temperature. Iron loss during acid-leaching can be negligible, which was less than 0.25%. The pH value of solution after leaching with 1% sulfuric acid was about 0.86, which means acid would not be exhausted during the process and it could be recycled, and the recycle of sulfuric acid solution would make the dephosphorization process more economical.

  • Dao-ling Xiong , Yue-hua Hu , wen-qin Qing , Ming-fei He

    A small molecular organic depressor glycerine-xanthate was synthesized. The effect of glycerine-xanthate on the flotation of sulfide minerals was investigated based on a function of pH value and concentration of glycerine-xanthate through flotation experiments in the presence and absence of Cu2+. The results show that glycerinee-xanthate has a strong dressing effect on marmatite at pH>6 and on arsenopyrite in weak acid and base conditions with butyl-xanthate as collector. In the presence of glycerine-xanthate, marmatite is activated by addition of Cu2+, but arsenopyrite cannot be activated and remains unfloatable. So the selective separation can be achieved for two minerals. The depression of glycerine-xanthate on sulfide minerals was discussed based on the radical electronegative calculation and the theory of HSAB. Infrared spectrum shows that there are some —OH and —CSS— in glycerine-xanthate molecule, which competes with butyl-xanthate on the mineral surface. As a result of many hydrophilic groups in glycerine-xanthate, the surfaces of marmatite and arsenopyrite become hydrophilic, thus the flotation of marmatite and arsenopyrite is depressed. The collector is adsorbed preferentially on the surface of marmatite and it shows a better floatability in the presence of Cu2+, whereas, the surface of arsenopyrite absorbs glycerine-xanthate and the flotation of arsenopyrite is depressed by glycerine-xanthate.

  • Zi-xing Cai , Zhuo-hua Duan , Hui-tuan Zhang , Jin-xia Yu

    Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence of abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer perceptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.

  • Zhuo-hua Duan , Ming Fu , Zi-xing Cai , Jin-xia Yu

    An adaptive particle filter for fault diagnosis of dead-reckoning system was presented, which applied a general framework to integrate rule-based domain knowledge into particle filter. Domain knowledge was exploited to constrain the state space to certain subset. The state space was adjusted by setting the transition matrix. Firstly, the monitored mobile robot and its kinematics models, measurement models and fault models were given. Then, 5 kinds of planar movement states of the robot were estimated with driving speeds of left and right side. After that, the possible (or detectable) fault modes were obtained to modify the transitional probability. There are two typical advantages of this method, i.e. particles will never be drawn from hopeless area of the state space, and the particle number is reduced.

  • Tao Gong , Zi-xing Cai , Han-gen He

    An artificial immune system was modelled with self/non-self selection to overcome abnormity in a mobile robot demo. The immune modelling includes the innate immune modelling and the adaptive immune modelling. The self/non-self selection includes detection and recognition, and the self/non-self detection is based on the normal model of the demo. After the detection, the non-self recognition is based on learning unknown non-self for the adaptive immunization. The learning was designed on the neural network or on the learning mechanism from examples. The last step is elimination of all the non-self and failover of the demo. The immunization of the mobile robot demo is programmed with Java to test effectiveness of the approach. Some worms infected the mobile robot demo, and caused the abnormity. The results of the immunization simulations show that the immune program can detect 100% worms, recognize all known Worms and most unknown worms, and eliminate the worms. Moreover, the damaged files of the mobile robot demo can all be repaired through the normal model and immunization. Therefore, the immune modelling of the mobile robot demo is effective and programmable in some anti-worms and abnormity detection applications.

  • Ai-bin Chen , Zi-xing Cai , De-wen Hu

    An on-demand distributed clustering algorithm based on neural network was proposed. The system parameters and the combined weight for each node were computed, and cluster-heads were chosen using the weighted clustering algorithm, then a training set was created and a neural network was trained. In this algorithm, several system parameters were taken into account, such as the ideal node-degree, the transmission power, the mobility and the battery power of the nodes. The algorithm can be used directly to test whether a node is a cluster-head or not. Moreover, the clusters recreation can be speeded up.

  • Li-jue Liu , Zi-xing Cai , Hong Chen

    Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.

  • Zhi-qiang Wen , Zi-xing Cai

    Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.

  • Bai-fan Chen , Zi-xing Cai , De-wen Hu

    An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.

  • Jun-yi Li , Hong-fang Gong , Ji-ping Hu , Bei-ji Zou , Jia-guang Sun

    A new model of event and message driven Petri network(EMDPN) based on the characteristic of class interaction for messages passing between two objects was extended. Using EMDPN interaction graph, a class hierarchical test-case generation algorithm with cooperated paths (copaths) was proposed, which can be used to solve the problems resulting from the class inheritance mechanism encountered in object-oriented software testing such as oracle, message transfer errors, and unreachable statement. Finally, the testing sufficiency was analyzed with the ordered sequence testing criterion(OSC). The results indicate that the test cases stemmed from newly proposed automatic algorithm of copaths generation satisfies synchronization message sequences testing criteria, therefore the proposed new algorithm of copaths generation has a good coverage rate.

  • Xi Li , Zhong-hua Deng , Guang-yi Cao , Xin-jian Zhu , Dong Wei

    Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 °C. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8–2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.

  • Fa-xing Ding , Zhi-wu Yu

    Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub columns at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.

  • Jian Deng , Li Bian , Xi-bing Li , Guo-yan Zhao , Xin-min Wang

    Ground crack and subsidence were investigated in Kaiyang Phosphorus Mine as an example. Contribution factors to cause ground crack and mining subsidence were studied, including mining method, mining depth and ore thickness and stope size, dip angle of orebody, geological structure, nature of overburden and water contents, and roof supports, etc. Countermeasures against cracks and subsidence were put forward. The uniaxial compressive strength of compounded phosphorus gypsum after 28 d of curing period was tested to be more than 1 MPa. Phosphorus gypsum can be used as materials for the backfill of stope. By comparison and numerical simulation, cut and fill mining method with middle-deep drilling holes and ore transportation by blasting force was selected as the optimum mining method in Kaiyang Phosphorus Mine.

  • Yue-guang He , Zhi-wei Li , Xiao-li Yang

    Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect of thawless material in orebody, filling effect caused by cubical expansibility of hydrate crystallization and uplifting effect of hard rock layer over cranny belt. The movement and deformation of ground surface caused by underground water solution mining is believed to be much weaker than that caused by well lane mining, which can be predicted by the stochastic medium theory method. On the basis of analysis on the engineering practice of water solution mining, its corresponding parameters can be obtained from the in-site data of the belt water and sand filling mining in engineering analog approach.

  • Wei-dong Lei , Jun Teng , A. Hefny , Jian Zhao , Jiong Guan

    In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.

  • Ming-hua Zhao , Ling Zhang , Ming-hui Yang

    The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided. With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 mm, which is close to the observed value 8.8 mm.