Kinetics of Zn cathodic deposition in alkaline zincate solution

Wen-jie Peng , Yun-yan Wang

Journal of Central South University ›› 2006, Vol. 13 ›› Issue (6) : 637 -641.

PDF
Journal of Central South University ›› 2006, Vol. 13 ›› Issue (6) : 637 -641. DOI: 10.1007/s11771-006-0007-7
Article

Kinetics of Zn cathodic deposition in alkaline zincate solution

Author information +
History +
PDF

Abstract

Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are −0.113 8 V and −0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-determining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are −0.118 V and −0.039 4 V, respectively, consisting with the experimental values. Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.

Keywords

alkaline zincate / Zn cathodic deposition / kinetics / apparent transfer coefficient

Cite this article

Download citation ▾
Wen-jie Peng, Yun-yan Wang. Kinetics of Zn cathodic deposition in alkaline zincate solution. Journal of Central South University, 2006, 13(6): 637-641 DOI:10.1007/s11771-006-0007-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangY.-yan.Study on the techniques and foundational theories of Zn-Fe alloy electrodeposition and Zn-Fe-TiO2 composite electrodeposition[D], 2002, Changsha, School of Metallurgical Science and Engineering, Central South University

[2]

WangY.-y., PengW.-j., ChaiL.-y., et al.. Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition[J]. Journal of Central South University of Technology: English Edition, 2003, 10(3): 183-189

[3]

TianZ.-wu.Study methods of electrochemistry[M], 1984, Beijing, Science Press

[4]

BarderA. J., FuknalL. R.Principle and application of electrochemical methods[M], 1986, Beijing, Chemical Industry Press

[5]

GongZ.-qing.Introduction to theoretical electrochemistry[M], 1997, Changsha, Central South University of Technology Press

[6]

CaoC.-nan.Corrosion electrochemistry principle[M], 1985, Beijing, Chemical Industry Press

[7]

ZhaQ.-xing.Introduction to kinetics of electrode process [M], 19872nd ed.Beijing, Science Press

[8]

ZhangZ., LengW. H., ShaoH. B., et al.. Study on the behavior of Zn-Fe alloy electroplating[J]. Journal of Electroanalytical Chemistry, 2001, 516(1–2): 127-130

[9]

DiazS. L., MattosO. R., BarciaO. E., et al.. ZnFe anomalous electrodeposition: Stationaries and local pH measurements[J]. Electrochimica Acta, 2002, 47(25): 4091-4100

[10]

AhnJ. G., AhnJ. W., LeeM. S.. A kinetic study on the Fe-Zn-P coatings by electrodeposition[J]. Materials Transactions, 2001, 42(12): 2567-2571

[11]

HamidZ. A.. Thermodynamic parameters of electroposition of Zn-Co-TiO2 composite coatings[J]. Anti-Corrosion Methods and Materials, 2001, 48(4): 235-240

[12]

Lopez-PerezG., AndreuR., Gonzalez-ArjonaD., et al.. Influence of temperature on the reduction kinetics of Zn2+ at a mercury electrode[J]. Journal of Electroanalytical Chemistry, 2003, 552: 247-259

[13]

Gimenez-RomeroD., Garcia-JarenoJ. J., VicenteF.. Kinetics of zinc anodic dissolution from the EIS characteristic points[J]. Electrochemistry Communications, 2003, 5(8): 722-727

[14]

VassilevG. P., LiuX. J., IshidaK.. Reaction kinetics and phase diagram studies in the Ti-Zn system[J]. Journal of Alloys and Compounds, 2004, 375(1–2): 162-170

[15]

GuptaS. P.. Comparative study of the kinetics of interface diffusion controlled transformations in Fe-Zn alloys[J]. Canadian Metallurgical Quarterly, 2001, 40(1): 127-142

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/