2025-04-09 2005, Volume 12 Issue 6

  • Select all
  • Li-hua Zhan , Jue Zhong , Xiao-qian Li , Ming-hui Huang

    The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600 °C, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500–600 °C, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300–500 °C, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300 °C and the strain rate is less than 1.00 s−1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s−1, it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.

  • Yong-sheng Li , Zheng Chen , Yan-li Lu , Yong-xin Wang , Jian-jun Zhang

    With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25−x alloy were studied and the relation between the incubation time and precipitation mechanism was investigated by using the atomic occupation probability picture and average order parameter curve. The simulation results demonstrate that there exists the incubation time for different precipitation mechanisms, such as non-classical nucleation, the mixed style of non-classical nucleation and spinodal decomposition, and spinodal ordering; and the incubation time shortens in turn for the three kinds of mechanisms. With the increase of Al content of Ni75AlxV25−x alloy, the incubation time of L12 phases shortens continuously and that of D022 phases is prolonged. The effects of temperature on the incubation time of L12 and D022 phases are accordant, i.e. the incubation time is greatly prolonged with the temperature rising.

  • Jin-lan Xia , Jin-dian Fu , Zhen-yuan Nie , li Shen

    The solution chemical and optical characteristics of formation of amine-terminated polyamidoamine dendrimer G2.0(NH2-PAMAM G2.0)-Au nanocomposites in the aqueous solution of NH2-PAMAM G2.0 at various mole ratios of Au(III) to NH2-PAMAM G2.0 were studied by both UV-visible spectrometry and fluorospectrometry. The NH2-PAMAM G2.0-Au nanocomposites, with a type of structure in which one Au nanoparticle is surrounded by several NH2-PAMAM G2.0 dendrimers, emit strong bluish violet fluorescence, and are uniform, water soluble and biocompatible as well as very stable in frozen conditions. The size of gold nanoparticles in the nanocomposites is about 2.5 nm and decreases with the increase of NH2-PAMAM G2.0 concentration. The NH2-PAMAM G2. 0 plays an important role in acting as host or micro-reactor for Au(III) before Au(III) reduction and acting as dispersant and stabilizer for gold nanoparticles after Au(III) reduction. Preliminary experiments of cells staining to human embryonic lung fibroblast cell lines show that the NH2-PAMAM G2.0-Au nanocomposites can be used as optical imaging markers for bioanalyses and medical diagnoses.

  • Jia-chang Zhao , Chun-yan Lai , Yang Dai , Jing-ying Xie

    The pore structures and electrochemical performances of mesoporous carbons prepared by silica sol template method as electrode material for supercapacitor were investigated. The mean pore size and mass specific capacitance of the mesoporous carbons increase with the increase of mass ratio of silica sol to carbon source (glucose). A modified template method, combining silica sol template method and ZnCl2 chemical activation method, was proposed to improve the mass specific capacitance of the mesoporous carbon with an improved BET surface area. The correlation of rate capability and pore structure was studied by constant current discharge and electrochemical impedance spectroscopy. A commercially available microporous carbon was used for comparison. The result shows that mesoporous carbon with a larger pore size displays a higher rate capability. Mesoporous carbon synthesized by modified template method has both high mass specific capacitance and good rate capability.

  • Tu-ming Ye , Jian-hong Yi , Shi-jin Chen , Yuan-dong Peng , Li-ya Li , Qing-lin Xia

    The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 – 0.22 g/cm3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm3 at 120 °C, and the maximum sintered density is 7.18 g/cm3 at 80 °C. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrepancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained; heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.

  • Yi Zhou , Shi-ying Zhang , Zhi-ping Zhu , Yong-kun Li

    In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97%–98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.

  • Xiao-bin Li , Zhi-jian Liu , Xiao-hui Xu , Qiu-sheng Zhou , Zhi-hong Peng , Gui-hua Liu

    Based on the population balance equation in a batch crystallizer characteristic of seeded precipitation, a model to calculate the rate of apparent crystal growth of aluminum hydroxide from the size distribution was developed. The simulation results indicate that the rate of apparent crystal growth during seeded precipitation exhibits a manifest dependence on the crystal size. In general, there is an obvious increase in the apparent crystal growth rate with the augment in crystal size. The apparent activation energy increases with the increase of characteristic crystal size, which indicates that the growth of small crystals is controlled by surface chemical reaction; it is gradually controlled by both the surface reaction and diffusion with the augment in crystal size.

  • Hua-jun Guo , Bing-quan Zhu , Xin-hai Li , Xin-ming Zhang , Zhi-xing Wang , Wen-jie Peng , Lu-ping Liu

    Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/L H2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 µm.

  • Jian-she Liu , Xue-hui Xie , Bang-mei Li , Qing-hai Dong

    By using thiobacillus ferroxidans (T. f) from Qixiashan, Hubei Province, China, the adsorption characteristics of T. f on surface of sulfide mineral were studied. The influences of adsorption time, pH value, temperature, initial inoculated concentration of bacteria, concentration of sulfide mineral powder, and variety of minerals on the adsorption characteristics were firstly investigated by using the ninhydrin colorimetric method, and the changes of contact angles and Zeta potentials of mineral surface during the bacterial adsorption were then determined. The results show that when the leaching experiments are performed for a long time from several days to a month, the maximal quantity of adsorption of T f on the surface of pyrite is obtained under the following conditions: leaching for 20 d, pH value in range of 1–2 and temperature at 30 °C, respectively; when the bio-leaching experiments are performed for a shorter leaching time, the maximal quantity of adsorption is obtained under the conditions: bio-leaching for 2 h, at 2.4×107 cell/mL of initial inoculated bacteria concentration, and at 10% of mineral powder concentration; and the adsorption quantities are different from one sulfide mineral to another, and the adsorption of T. f on the surface of sulfide minerals includes three phases: increasing phase, stationary phase and decreasing phase.

  • Wei Sun , Yue-hua Hu , Run-qing Liu

    A special experiment setup was designed to observe the interaction between bubbles and particle in flotation cell and to analyze the bubble characteristics such as bubble size, distribution and bubble-loading efficiency. Bubbles in water-gas system and three-phase system were measured. The results indicate that with the current setup the bubbles as small as 10 µm can be easily distinguished. The average size of the bubbles generated under the given conditions in two-phase system is 410 µm at frother concentration of 0.004%, which is in good correspondence with the results of other works. The effect of frother on bubble size was probed. Increasing frother concentration from 0 to 0.004% causes a reduction of bubble size from 700 to 400 µm. The bubble loading efficiency was reported. The result indicates that the fine particle is more easily entrapped than the coarse particle. Some factors, which have effect on measurement accuracy were discussed. The aeration speed has a significant effect on the accuracy of results, if it surpasses 30 mL/s, and the image becomes unclear due to the entrapment of fine particle. Another factor, which can affect observing results, is the sampling position. At a wrong sampling position, the images become unclear.

  • Li-qun Luo , Jing-sheng Zhang , Yong-fu Yu

    Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron fines. The separation results of the three iron samples are as follows: iron grade 66.77%–67.98% and the recovery of iron 69.26%–70.70% by the FIMS process with flocculants. The comparative results show that under the same separation conditions the FIMS process can effectively increase the recovery of iron by 10.97%–15.73%. The flowsheet results confirm the reliability of the process in a SHP high intensity magnetic separator. The concentrate product can be used as raw materials for direct reduction iron-smelting. The hydrolyzed and causticized flocculants can selectively flocculate fine feebly-magnetic iron mineral particles to increase their apparent separation sizes. The larger the separation size, the stronger the magnetic force. By comparing the separation results of the three samples it is found that among the three samples the higher the limonite content, the better the separation result. This means that the separation result relates closely to the flocculation process and the adding pattern of the flocculant.

  • Zhan-guang Chen , Feng-lian Ren , Shi-hui Si , Xu-hong Liao , Wei-feng Ding , Jin-bin Liu

    A new method for the determination of DNA was developed with azocarmine G(AG) in the presence of cetyltrimethylammonium bromide(CTAB) by the resonance light scattering (RLS) technique. The synthetic samples were determined with satisfactory results, and the reaction mechanism was also studied. The results show that under the optimum conditions, the weak RLS signal of AG can be enhanced by DNA, which results from the formation of a new ternary complex AG-CTAB-DNA with large size. Moreover, the enhanced RLS intensity at 552 nm is directly proportional to the concentration of DNA in the range of 0–1.0 µg/mL for fish sperm DNA (fsDNA) and 0–1.5 µg/mL for calf thymus DNA (ctDNA). Based on this, a new assay of DNA can be established. The detection limits (3σ) are 2.1 ng/mL for fsDNA and 2.2 ng/mL for ctDNA, respectively.

  • Rui-ren Tang , Zi-er Yan , Yi-ming Luo

    A new efficient method for preparing o-L-α-glycerylphosphoryl-L-serine was presented. D-α, β-isopropylidene glycerol was phosphorylated with phenylphosphoryl dichloride and the resulting o-D-α,β-isopropylidene glycerylphenylphosphoryl chloride was esterified with N-tert-butoxycarbonyl-L-serine ethyl ester in the presence of pyridine to give acetone L-α-glycerylphenylphosphoryl-N-tert-butoxycarbonyl-L-serine ethyl ester. Finally, the protective groups were removed by two-step hydrolysis while strictly controlling pH value. The reaction to produce (1, 2), (5, 6)-diisopropylidene-D-mannitol, which is the key precursor for the preparation of D-α, β-isopropylidene glycerol, was monitored by using gas chromatography-mass spectrometer in order to obtain an optimum yield of 65%. All compounds were characterized through elemental analysis, infrared spectra, 1H, 13C, 31P-nuclear magnetic resonance spectra and mass spectra.

  • Shang-hong He , Jue Zhong

    Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control (HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency band-width of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.

  • Shi-wei Chen , Zhu-guo Li , Shou-xi Zhou

    The basic difference non-equal interval model GM(1,1) in grey theory was used to fit and forecast data series with non-equal lengths and different inertias, acquired from oil monitoring of internal combustion engines. The fitted and forecasted results show that the length or inertia of a sequence affects its precision very much, i. e. the bigger the inertia of a sequence is, or the shorter the length of a series is, the less the errors of fitted and forecasted results are. Based on the research results, it is suggested that short series should be applied to be fitted and forecasted; for longer series, the newer datum should be applied instead of the older datum to be analyzed by non-equal interval GM(1,1) to improve the forecasted and fitted precision, and that data sequence should be verified to satisfy the conditions of grey forecasting.

  • He-song Li , Chi Mei

    An especial snake SiC pipe was designed for collecting losing heat from furnaces. The three-dimensions thermal, fluid and thermal stress coupled field of heat exchanger was analyzed by using the commercial engineering computer package ANSYS. The structural and operational parameters of heat exchanger, the junction between standpipe and snake pipe, the diameter of snake pipe, ratio of thickness to diameter of pipe, velocity of inlet air were optimized for thermal stress. The computed results show that the large thermal stress exits in the SiC, and the stand pipe should be ellipse for the least thermal stress; the optimal ratio of thickness to diameter of pipe is 6, the velocity of inlet air is 25 m/s. The most thermal stress is in inverse proportion to diameter of pipe and velocity of inlet air.

  • Zhi-gang Hu , Hao Ma , Guo-jun Wang , Lin Liao

    A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad hoc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.

  • Guo-jun Wang , Lin Liao , Jian-nong Cao , Keith C. C. Chan

    A novel multicast communication model using a RingNet hierarchy is proposed. The RingNet hierarchy consists of 4 tiers: border router tier, access gateway tier, access proxy tier and mobile host tier. Within the hierarchy, the upper 2 tiers are dynamically organized into logical rings with network entities. A novel hierarchical secure access control scheme on key management is proposed based on the RingNet model. Network entities within the multicast hierarchy belong to different privileged local groups. Network entities of the higher-privileged local groups have the right to derive the keys held by network entities of the lower-privileged local groups, and the reverse operation is not allowed. With the key management approach, any insertion and changing of local group key will not affect other local groups. The analytical result shows that the scheme has higher security than Lin’s.

  • Xiao-hui Xiao , Gong-ping Wu , E Du , Tie-lin Shi

    A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non-obstacle straight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1:1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.

  • Ai-xiang Wu , Hong-jiang Wang , Yong Xi , Bao-hua Yang , Jian-feng Li , Sheng-hua Yin , Ke-bing Zha

    Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere was analyed to estimate the surface temperature of the ore particle in dump and discover the law of forced heat convection of heat flow transfer in dump. And the lixiviate flow formula taking a certain heat flow out of dump was deduced by using the inversion method. Through theoretic analysis, combining Dexing copper mine heap leaching production practice, the results show that the heat flow of chalcopyrite leaching emitted is not so great, but the heat flow of pyrite leaching and sulphur oxidation produced take up a higher proportion of total heat flow; the dissipated heat flow takes up a lower proportion, and most of heat flow is absorbed by itself, thus the inside temperature rises gradually; and the saturation flow form for leaching is adopted, which makes the lixiviate seepage in the transitional flow or even in the turbulent flow, so as to accelerate the heat flow diffusing and keep the leaching dump temperature suitable for bacteria living.

  • Chao Wu , Jia-cai Ou , Bo Zhou

    By using the experimental approach of dropping liquid, the coupling of three anionic wetting agents with ten dust samples of sulfide ores was studied, and particularly the wetting effects of the wetting agents on the sulfide dust influenced by factors of agent concentration and sulfate additive in the wetting agent solutions were investigated. The results show that the when solution temperature is about 20 °C, all the selected wetting agents are effective to most dust samples, but the effect is different. Wetting agents are more effective to the dust which is difficult to be wetted. Wetting agent solution with sodium sulfate can improve the wetting ability of sulfide dust. For sodium dodecyl benzene sulfonate, the suitable concentration of sodium sulfate is 1 – 2 mmol/L. The cost of wetting agents can be reduced because the sodium sulfate is much cheaper than many surfactants. Since the dust of sulfide ores is composed of various minerals and elements, the whole effect of depressing dust should be considered while innovating a wetting agent.

  • Yu-jun Zuo , Xi-bing Li , Zi-long Zhou , Chun-de Ma , Yi-ping Zhang , Wei-hua Wang

    For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.

  • Wen Wan , Ping Cao , Tao Feng , Hai-ping Yuan

    Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.

  • Wei-dong Jiang

    The distribution of tailings lenticles reflects the sediment state of tailing dam, and has a great influence on the stability of the dam. In order to disclose the distribution law of tailings lenticles in theory, 12 geological cross-sections, including 7 cross-sections of tailings dam constructed by the upstream method and 5 cross-sections by the middle line method, were analyzed with box dimension method. The results show that the distribution of tailings lenticles has better fractal character with box dimension from 1.290 7 to 1.513 6. The box dimension of the tailings dam constructed by upstream method is nearly 1.50 and that by middle line method is 1.30. Thereby the values of lenticles dimension have obvious relation to the method of constructing dam, and reflect the sediment state of tailings dam with the rule that smaller value means better state.