PDF
Abstract
By using thiobacillus ferroxidans (T. f) from Qixiashan, Hubei Province, China, the adsorption characteristics of T. f on surface of sulfide mineral were studied. The influences of adsorption time, pH value, temperature, initial inoculated concentration of bacteria, concentration of sulfide mineral powder, and variety of minerals on the adsorption characteristics were firstly investigated by using the ninhydrin colorimetric method, and the changes of contact angles and Zeta potentials of mineral surface during the bacterial adsorption were then determined. The results show that when the leaching experiments are performed for a long time from several days to a month, the maximal quantity of adsorption of T f on the surface of pyrite is obtained under the following conditions: leaching for 20 d, pH value in range of 1–2 and temperature at 30 °C, respectively; when the bio-leaching experiments are performed for a shorter leaching time, the maximal quantity of adsorption is obtained under the conditions: bio-leaching for 2 h, at 2.4×107 cell/mL of initial inoculated bacteria concentration, and at 10% of mineral powder concentration; and the adsorption quantities are different from one sulfide mineral to another, and the adsorption of T. f on the surface of sulfide minerals includes three phases: increasing phase, stationary phase and decreasing phase.
Keywords
thiobacillus ferrooxidans
/
sulphide mineral
/
adsorption
/
bio-leaching
Cite this article
Download citation ▾
Jian-she Liu, Xue-hui Xie, Bang-mei Li, Qing-hai Dong.
Adsorption characteristics of thiobacillus ferrooxidans on surface of sulfide minerals.
Journal of Central South University, 2005, 12(6): 671-676 DOI:10.1007/s11771-005-0067-0
| [1] |
MalteH. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1–4): 105-119
|
| [2] |
Bellon-FontaineM N, RaultJ, van OssC J. Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells[J]. Colloids and Surfaces B: Biointerfaces, 1996, 7(1–2): 47-53
|
| [3] |
PoortingaA T, BosR, NordeW, et al.. Electric double layer interactions in bacterial adhesion to surfaces [J]. Surface Science Reports, 2002, 47(1): 1-32
|
| [4] |
LuZ X, KumakuraM. Adhesion of filamentous microbial cells on paper covered with ionic polymers by radiation polymerization[J]. Colloids and Surfaces B: Biointerfaces, 1995, 3(6): 343-348
|
| [5] |
van OssC JInterfacial Forces in Aqueous Media[M], 1994, New York, Marcel Dekker
|
| [6] |
TongXiongThe Theory and Practice of Microbe Leaching[M], 1997, Beijing, Metallurgical Industry Press(in Chinese)
|
| [7] |
BoonaertC J P, DufrêneY F, et al.. Adhesion of Lactococcus lactis to model substrata: direct study of the interface[J]. Colloids and Surfaces B: Biointerfaces, 2001, 22(3): 171-182
|
| [8] |
EdwardsK J, RutenbergA D. Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution [J]. Chemical Geology, 2001, 180(1–4): 19-32
|
| [9] |
YahyaA, JohnsonD B. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic grampositive bacteria[J]. Hydrometallurgy, 2002, 63(2): 181-188
|
| [10] |
HallbergK B, JohnsonD B. Novel acidophiles isolated from moderately acidic mine drainage waters[J]. Hydrometallurgy, 2003, 71(1–2): 139-148
|
| [11] |
LiXiu-yan, WeiDe-zhou. Function of bacterial attachment on the pre-biooxidation of arsenic-bearing gold concentrate[J]. Journal of Northeastern University(Natural Science), 2000, 21(6): 641-644(in Chinese)
|
| [12] |
LiYuan-gao, TangAi-dongThe Physiochemical Experiment Research Methods[M], 2001, Changsha, Central South University of Technology Press(in Chinese)
|
| [13] |
HigashitaniK, IseriH, OkuharaK, et al.. Magnetic effects on zeta potential and diffusivity of nonmagnetic colloidal particles[J]. Journal of Colloid and Interface Science, 1995, 172(2): 383-388
|
| [14] |
WestR J, StephensG M, CilliersJ J. Zeta potential of silver absorbing thiobacillus ferrooxidans [J]. Minerals Engineering, 1998, 11(2): 189-194
|
| [15] |
KangH S, KwonS S, NamY S, et al.. Determination of zeta potentials of polymeric nanoparticles by the conductivity variation method [J]. Journal of Colloid and Interface Science, 2002, 255(2): 352-355
|
| [16] |
EscobarB, JedlickiE, WiertzJ, et al.. A method for evaluating the proportion of free and attached bacteriain bioleaching of chalcopyrite with thiobacillus ferrooxidans [J]. Hydrometallurgy, 1996, 40(1–2): 1-10
|
| [17] |
KaranG, NatarjanK A, ModakJ M. Estimation of mineral-adhered biomass of thiobacillus ferrooxidans by protein assay some problems and remedies [J]. Hydrometallurgy, 1996, 42(2): 169-175
|
| [18] |
LiJian-wu, XiaoNeng-geng, YuRui-yuan, et al.Physiochemical Experiment Principles and Methods [M], 1994, Beijing, Peking University Press(in Chinese)
|
| [19] |
ZhouJi-kui, NiuYin-jian. Protein content of mineral-adhered bacterium by ninhydrin colorimetric method[J]. Journal of Central South University of Technology(Natural Science), 2003, 34(2): 128-131(in Chinese)
|