Determining the structures and parameters of radial basis function neural networks using improved genetic algorithms

Meiqin Liu , Jida Chen

Journal of Central South University ›› 1998, Vol. 5 ›› Issue (2) : 141 -146.

PDF
Journal of Central South University ›› 1998, Vol. 5 ›› Issue (2) : 141 -146. DOI: 10.1007/s11771-998-0057-0
Article

Determining the structures and parameters of radial basis function neural networks using improved genetic algorithms

Author information +
History +
PDF

Abstract

The method of determining the structures and parameters of radial basis function neural networks (RBFNNs) using improved genetic algorithms is proposed. Akaike’s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs, but also obtain the optimal or suboptimal structures of networks.

Keywords

radial basis function neural network / genetic algorithms / Akaike’s information criterion / overfitting

Cite this article

Download citation ▾
Meiqin Liu,Jida Chen. Determining the structures and parameters of radial basis function neural networks using improved genetic algorithms. Journal of Central South University, 1998, 5(2): 141-146 DOI:10.1007/s11771-998-0057-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/