Nonlinear cascade control of single-rod pneumatic actuator based on an extended disturbance observer

Ai-min Li , De-yuan Meng , Bo Lu , Qing-yang Li

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1637 -1648.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1637 -1648. DOI: 10.1007/s11771-019-4118-3
Article

Nonlinear cascade control of single-rod pneumatic actuator based on an extended disturbance observer

Author information +
History +
PDF

Abstract

Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed. The proposed controller comprises an extended disturbance observer (EDOB) and a nonlinear robust control law synthesized by the backstepping method. The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties. With the use of parameter and disturbance estimates, the nonlinear cascade controller, which consists of an outer position tracking loop and an inner load pressure loop, is further designed to attenuate the effects of parameter and disturbance estimation errors. The stability of the closed-loop system is proven by means of Lyapunov theory. Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.

Keywords

electro-pneumatic servo system / extended disturbance observer / cascade control / robust control / position tracking

Cite this article

Download citation ▾
Ai-min Li, De-yuan Meng, Bo Lu, Qing-yang Li. Nonlinear cascade control of single-rod pneumatic actuator based on an extended disturbance observer. Journal of Central South University, 2019, 26(6): 1637-1648 DOI:10.1007/s11771-019-4118-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HuangC, ChenJ. On the implementation and control of a pneumatic power active lower-limb orthosis [J]. Mechatronics, 2013, 23(5): 505-517

[2]

BoneG M, XueM, FlettJ. Position control of hybrid pneumatic-electric actuators using discrete-valued model-predictive control [J]. Mechatronics, 2015, 25(2): 1-10

[3]

GirinA, PlestanF, BrunX, GlumineauA. High order sliding-mode controllers of an electropneumatic actuator: Application to an aeronautic benchmark [J]. IEEE Transactions on Control Systems Technology, 2009, 173: 633-645

[4]

RicherE, HurmuzluY. A high performance pneumatic force actuator system: Part I-Nonlinear mathematical model [J]. Journal of Dynamic Systems Measurement & Control, 2001, 122(3): 416-425

[5]

BeaterPPneumatic Drives [M], 2007, Berlin, Springer

[6]

RichardE, ScavardaS. Comparison between linear and nonlinear control of an electro pneumatic servo drive [J]. Journal of Dynamic Systems Measurement & Control, 1996, 118(2): 245-252

[7]

TaghizadehM, NajafiF, GhaffariA. Multimodel PD-control of a pneumatic actuator under variable loads [J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(5–8): 655-662

[8]

KhayatiK, BigrasP, DessaintL A. LuGre model based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via Lmi optimization [J]. Mechatronics, 2009, 19(4): 535-547

[9]

XiangF, WikanderJ. Block-oriented approximate feedback linearization for control of pneumatic actuator systems [J]. Control Engineering Practice, 2004, 12(4): 387-399

[10]

LeeH K, ChoiG S, ChoiG H. A study on tracking position control pneumatic actuators [J]. Mechatronics, 2002, 12(6): 813-831

[11]

TanakaK, YamadaY, SakamotoM, UchikadoSModel reference adaptive control with neural network for electro-pneumatic servo system [C]// Proceedings of the IEEE International Conference on Control Applications, 1998, Italy, IEEE: 11301134

[12]

RichardsonR, PlummerA R, BrownM D. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity [J]. IEEE Transactions on Control Systems Technology, 2001, 9(2): 330-334

[13]

BoneG M, NingS. Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators [J]. IEEE/Asme Transactions on Mechatronics, 2007, 12(5): 557-561

[14]

SmaouiM, BrunX, ThomassetD. Systematic control of an electropneumatic system: Integrator back-stepping and sliding mode control [J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 905-913

[15]

RaoZ, BoneG M. Nonlinear modeling and control of servo pneumatic actuators [J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 562-569

[16]

PlestanF, ShtesselY, BregeaultV, PoznyakA. Sliding mode control with gain adaptation-Application to an electro pneumatic actuator [J]. Control Engineering Practice, 2013, 21(5): 679-688

[17]

ShtesselY, TalebM, PlestanF. A novel adaptive-gain supertwisting sliding mode controller: Methodology and application [J]. Automatica, 2012, 48(5): 759-769

[18]

LeeL W, LiI H. Wavelet-based adaptive sliding-mode control with H∞ tracking performance for pneumatic servo system position tracking control [J]. Iet Control Theory and Applications, 2012, 6(11): 1699-1714

[19]

SmaouiM, BrunX, ThomassetD. A study on tracking position control of an electro pneumatic system using backstepping design [J]. Control Engineering Practice, 2006, 14(8): 923-933

[20]

TsaiY, HuangA. Multiple-surface sliding controller design for pneumatic servo systems [J]. Mechatronics, 2008, 18(9): 506-512

[21]

LuC, HwangY, ShenY. Backstepping sliding-mode control for a pneumatic control system [J]. Proc IMechE Part I: Journal of Systems and Control Engineering, 2010, 224(6): 763-770

[22]

CarneiroJ, AlmeidaF. A high-accuracy trajectory following controller for pneumatic devices [J]. International Journal of Advanced Manufacturing Technology, 2012, 61(1): 253-267

[23]

CarneiroJ, AlmeidaF. Accurate motion control of a servo pneumatic system using integral sliding mode control [J]. International Journal of Advanced Manufacturing Technology, 2015, 77(9): 1533-1548

[24]

MengD, TaoG, ZhuX. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders [J]. International Journal of Control, 2013, 86(9): 1620-1633

[25]

MengD, TaoG, LiA, LiW. Precision synchronization motion trajectory tracking control of multiple pneumatic cylinders [J]. Asian Journal of Control, 2016, 18(5): 1749-1764

[26]

MengD, TaoG, LiA, LiW. Motion synchronization of dual-cylinder pneumatic servo systems with integration of adaptive robust control and cross-coupling approach [J]. Journal of Zhejiang University-Science C (Computers and Electronics), 2014, 15(8): 651-663

[27]

LiS, YangJ, ChenW, ChenXDisturbance observer-based control: Methods and applications [M], 2014, New York, Taylor and Francis

[28]

ChenW, YangJ, GuoL, LiS. Disturbance-observer-based control and related methods-An overview [J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095

[29]

GuoK, WeiJ, TianQ. Nonlinear adaptive position tracking of an electro-hydraulic actuator [J]. Proc IMechE Part C: Journal of Mechanical Engineering Science, 2015, 229(17): 3252-3265

[30]

WomD, KimW, ShinD, ChungC. High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems [J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 787-795

[31]

XuZ, MaD, YaoJ, UllahN. Feedback nonlinear robust control for hydraulic system with disturbance compensation [J]. Proc. IMechE Part I: Journal of Systems and Control Engineering, 2016, 230(9): 978-987

[32]

GuoK, WeiJ, FangJ. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer [J]. Mechatronics, 2015, 27(4): 47-56

[33]

GuoQ, ZhangY, CellerB, SuS. Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown [J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6909-6920

[34]

GuoQ, YinJ, YuT, JiangD. Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system [J]. ISA Transactions, 2017, 68(5): 367-380

[35]

PiY, WangX. Observer-based cascade control of a 6-Dof parallel hydraulic manipulator in joint space coordinate [J]. Mechatronics, 2010, 20(6): 648-655

[36]

GuoQ, YinJ, YuT, JiangD. Saturated adaptive control of electrohydraulic actuator with parametric uncertainty and load disturbance [J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7930-7941

[37]

AschemannH, SchindeleD. Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators [J]. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3855-3864

[38]

HuangW, LiuC, HsuP, YehS. Precision control and compensation of servomotors and machine tools via the disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 420-429

[39]

CarneiroJ, AlmeidaF. Reduced order thermodynamic models for servopneumatic actuator chambers [J]. Proc IMechE Part I: Journal of Systems and Control Engineering, 2006, 220(4): 301-304

[40]

MengD, TaoG, ChenJ, BanWModeling of a pneumatic system for high-accuracy position control [C]// Proceedings of the International Conference on Fluid Power and Mechatronics, 2011, China, IEEE: 505510

[41]

GoodwinG C, MayneD Q. A parameter estimation perspective of continuous time model reference adaptive control [J]. Automatica, 1989, 23(1): 57-70

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/