Gas-liquid mass transfer of carbon dioxide capture by magnesium hydroxide slurry in a bubble column reactor
Peng-fei Xie , Li-qing Li , Zhi-cheng He , Chang-qing Su
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1592 -1606.
Gas-liquid mass transfer of carbon dioxide capture by magnesium hydroxide slurry in a bubble column reactor
Magnesium hydroxide (Mg(OH)2) has been considered as a potential solvent for C02 removal of coal-fired power plant and biomass gas. The chemistry action and mass to transfer mechanism of C02-H20-Mg(OH)2 system in a slurry bubble column reactor was described, and a reliable computational model was developed. The overall mass transfer coëfficiënt and surface area per unit volume were obtained using experimental approach and simulation with software assistance. The results show that the mass transfer process of C02 absorbed by Mg(OH)2 slurry is mainly liquid-controlled, and slurry concentration and temperature are main contributory factors of volumetric mass transfer coëfficiënt and liquid side mass transfer coefficient. High concentration of C02 has an adverse effect on its absorption because it leads to the fast deposition of MgC03-3H20 crystals on the surfaces of unreacted Mg(OH)2 particles, reducing the utilization ratio of magnesium hydroxide. Meanwhile, high CO32 ion concentration limits the dissolution of MgC03 to absorb C02 continually. Concentration of 0.05 mol/L Mg(OH)2, 15% vol C02 gas and operation temperature at 35 °C are recommended for this C02 capture system
mass transfer / CO2 capture / magnesium hydroxide / bubble column
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
/
| 〈 |
|
〉 |