Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries
Hai Hu , Yu Wang , Yan Huang , Hong-bo Shu , Xian-you Wang
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1521 -1529.
Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries
Using low-cost FePO4·2H2O as iron source, Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method. The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks, indicating high crystalline and phase purity. The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm, and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm. The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles. Using lithium metal as anode, the composite delivers a discharge capacities of 102.8, 96.4 and 90.3 mA·h/g at rates of 0.5C, 1C and 2C, respectively. After 100 cycles at 0.5C, a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%. The Li+ diffusion coefficient (D) of Na2FePO4F/C composite is calculated as 1.71×10−9 cm2/s. This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.
lithium-ion batteries / Na2FePO4F/C composite / alcohol-assisted ball milling / solid state reaction / spherical-like particles
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
/
| 〈 |
|
〉 |