Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries

Yue Zhang , Yan Ouyang , Li Liu , Jing Xia , Su Nie , Wen Liu , Xian-you Wang

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1510 -1520.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1510 -1520. DOI: 10.1007/s11771-019-4107-6
Article

Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries

Author information +
History +
PDF

Abstract

Na0.44MnO2 nanorods have been prepared by a hydrothermal method. The experimental parameters have been systematically investigated and optimized. The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at 200 °C for 16 h show the best electrochemical properties, which deliver the high initial discharge capacity of 110.7 mA·h/g at 50 mA/g in potential window 2.0–4.0 V To further improve their electrochemical properties, a ball milling process with graphene has been carried out to obtain Na0.44MnO2/graphene composite. The initial discharge capacity of Na0.44MnO2/graphene composite is 106.9 mA·h/g at a current density of 50 mA/g. After 100 cycles, the residual discharge capacity is 91.8 mA·h/g and the capacity retention rate is 85.9%, which is much higher than that of pristine Na0.44MnO2 nanorods (74.7%) at the same condition. What is more, when the current density reaches 500 and 1000 mA/g, the corresponding discharge capacities of Na0.44MnO2/graphene composite are about 89 and 78 mA·h/g, respectively, indicating outstanding rate capability.

Keywords

manganese-based compounds / hydrothermal method / sodium-ion batteries / composite materials

Cite this article

Download citation ▾
Yue Zhang, Yan Ouyang, Li Liu, Jing Xia, Su Nie, Wen Liu, Xian-you Wang. Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries. Journal of Central South University, 2019, 26(6): 1510-1520 DOI:10.1007/s11771-019-4107-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SlaterM D, KimD, LeeE, JohnsonC S. Sodium-ion batteries [J]. Advanced Functional Materials, 2013, 23(8): 947-958

[2]

XiaJ, LiuL, XieJ-j, YanH-x, YuanY-t, ChenM-f, HuangC, ZhangY, NieS, WangX-you. Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries [J]. Electrochimica Acta, 2018, 269: 452-461

[3]

XieJ-j, PeiY, LiuL, GuoS-p, XiaJ, LiM, OuyangY, ZhangX-y, WangX-you. Hydrothermal synthesis of antimony oxychlorides submicron rods as anode materials for lithium-ion batteries and sodium-ion batteries [J]. Electrochimica Acta, 2017, 254: 246-254

[4]

YiL-g, LiuL, GuoG-x, ChenX-y, ZhangY, YuS-y, WangX-you. Expanded graphite@Sn02@polyaniline composite with enhanced performance as anode materials for lithium ion batteries [J]. Electrochimica Acta, 2017, 240: 63-71

[5]

XieJ-j, LiuL, XiaJ, ZhangY, LiM, OuyangY, NieS, WangX-you. Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries [J]. Nano-Micro Letters, 2018, 10(1): 12

[6]

YuanD D, WangY X, CaoY L, AiX P, YangH X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2015, 7168585-8591

[7]

LiH-x, ChenX-b, JinT, BaoW-z, ZhangZ-a, JiaoL-fang. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries [J]. Energy Storage Materials, 2019, 16: 383-390

[8]

JinT, HanQ-q, WangY-j, JiaoL-fang. ID nanomaterials: Design, synthesis, and applications in sodium-ion batteries [J]. Small, 2018, 14(2): 1703086

[9]

WangX-j, CaoK-z, WangY-j, JiaoL-fang. Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries [J]. Small, 2017, 13291700873

[10]

HeH-n, GanQ-m, WangH-y, XuG-l, ZhangX-y, HuangD, FuF, TangY-g, AmineK, ShaoM-hua. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries [J]. Nano Energy, 2018, 44: 217-227

[11]

SunY, GuoS-h, ZhouH-sheng. Exploration of advanced electrode materials for rechargeable sodium-ion batteries [J]. Advanced Energy Materials, 20181800212

[12]

LiW-j, HanC, WangW-l, GebertF, ChouS-l, LiuH-k, ZhangX-h, DouS-xue. Commercial prospects of existing cathode materials for sodium ion storage [J]. Advanced Energy Materials, 2017, 7(24): 1700274

[13]

JinT, LiuY-c, LiY, CaoK-z, WangX-j, JiaoL-fang. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries [J]. Advanced Energy Materials, 2017, 7151700087

[14]

HeH-n, HuangD, PangW-k, SunD, WangQ, TangY-g, JiX-b, GuoZ-p, WangH-yan. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance [J]. Advanced Materials, 2018, 30261801013

[15]

ZhangZ-h, WuD-h, ZhangX, ZhaoX-d, ZhangH-c, DingF, XieZ-j, ZhouZhen. First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries [J]. Journal of Materials Chemistry A, 2017, 52512752-12756

[16]

AdamczykE, PralongV. Na2Mn3O7: A suitable electrode material for Na-ion batteries? [J]. Chemistry of Materials, 2017, 29(11): 4645-4648

[17]

AbakumovA M, TsirlinA A, BakaimiI, TendelooG V, LappasA. Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides: NaMnO2 polymorphism, redox potentials, and magnetism [J]. Chemistry of Materials, 2014, 26(10): 3306-3315

[18]

WangQ-d, YangW, KangF-y, LiB-hua. Na2Mn3+0.3Mn4+2.7O6.85: A cathode with simultaneous cationic and anionic redox in Na-ion battery [J]. Energy Storage Materials, 2018, 14361-366

[19]

SuD-w, WangC-y, AhnH, WangG-xiu. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance [J]. Chemistry—A European Journal, 2013, 19(33): 10884-10889

[20]

SauvageF, LaffontL, TarasconJ M, BaudrinE. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2 [J]. Inorganic Chemistry, 2007, 46(8): 3289-3294

[21]

LiuS, FanC-z, ZhangY, LiC-h, YouX-zeng. Low-temperature synthesis of Na2Mn5O10 for supercapacitor applications [J]. Journal of Power Sources, 2011, 196(23): 10502-10506

[22]

HouY, TangH-w, LiB, ChangK, ChangZ-r, YuanX-z, WangH-jiang. Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors [J]. Materials Chemistry and Physics, 2016, 171: 137-144

[23]

BillaudJ, ClementR J, ArmstrongA R, Canales-VazquezJ, RozierP, GreyC P, BruceP G. β-NaMnO2: A high-performance cathode for sodium-ion batteries [J]. Journal of the American Chemical Society, 2014, 136(49): 17243-17248

[24]

WangC H, YehY W, WongittharomN, WangY-c, TsengC J, LeeS W, ChangW-s, ChangJ K. Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes [J]. Journal of Power Sources, 2015, 274: 1016-1023

[25]

YuJ-y, HongM-r, WangL, HuangK, GuoY-xian. Synthesis and gas-sensing properties of P-type Na0.44MnO2 nanoribbons [J]. Materials Letters, 2016, 164: 440-443

[26]

LiuC, LiJ-g, ZhaoP-xiang. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties [J]. Journal of Nanoparticle Research, 2015, 17(3): 142

[27]

LiuX, ZhangN, NiJ-f, GaoL-jun. Improved electrochemical performance of sol-gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor [J]. Journal of Solid State Electrochemistry, 2013, 1771939-1944

[28]

XuM-w, NiuY-b, ChenC-j, SongJ, BaoS-juan. Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries [J]. RSC Adv, 2014, 4(72): 38140-38143

[29]

ZhaoL-w, NiJ-f, WangH-b, GaoL-jun. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries [J]. RSC Advances, 2013, 3(18): 6650

[30]

WangX-y, ZhouX-f, YaoK, ZhangJ-g, LiuZ-ping. A SnO2/graphene composite as a high stability electrode for lithium ion batteries [J]. Carbon, 2011, 491133-139

[31]

DavidL, BhandavatR, SinghG. MoS2/Graphene composite paper for sodium-ion battery electrodes [J]. ACS Nano, 2014, 8(2): 1759-1770

[32]

HeX, WangJ, QiuB, PaillardE, MaC-z, CaoX, LiuH-d, StanM C, LiuH-d, GallashT, MengY S, LiJie. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries [J]. Nano Energy, 2016, 27: 602-610

[33]

RuffoR, FathiR, KimD J, JungY H, MariC M, KimK. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte [J]. Electrochimica Acta, 2013, 108: 575-582

[34]

KimH, KimD J, SeoD H, YeomM S, KangK, KimD K, JungY. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery [J]. Chemistry of Materials, 2012, 24(6): 1205-1211

[35]

CaoY-l, XiaoL-f, WangW, ChoiD, NieZ-m, YuJ-g, SarafL V, YangZ-g, LiuJun. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life [J]. Advanced Materials, 2011, 23(28): 3155-3160

[36]

LiuQ-q, HuZ, ChenM-z, GuQ-f, DouY-h, SunZ-q, ChouS-l, DouS-xue. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3644-3652

[37]

FerraraC, TealdiC, Dall'astaV, BuchholzD, ChagasL G, QuartaroneE, BerbenniV, PasseriniS. High-performance Na0.44MnO2 slabs for sodium-ion batteries obtained through urea-based solution combustion synthesis [J]. Batteries, 2018, 4(1): 8

[38]

DaiK-h, MaoJ, SongX-y, BattagliaV, LiuGao. Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method [J]. Journal of Power Sources, 2015, 285161-168

[39]

LuoC, LangrockA, FanX-l, LiangY-j, WangC-sheng. P2-type transition metal oxides for high performance Na-ion battery cathodes [J]. Journal of Materials Chemistry A, 2017, 5(34): 18214-18220

[40]

WuF, ZhangX-x, ZhaoT-l, LiL, XieM, ChenR-jie. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3773-3781

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/