Synthesis and electrochemical properties of Li2FeSiO4/C/Ag composite as a cathode material for Li-ion battery

Yi-qun Tang , Xi Liu , Xiao-bing Huang , Xiang Ding , Shi-biao Zhou , Yuan-dao Chen

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1443 -1448.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1443 -1448. DOI: 10.1007/s11771-019-4100-0
Article

Synthesis and electrochemical properties of Li2FeSiO4/C/Ag composite as a cathode material for Li-ion battery

Author information +
History +
PDF

Abstract

Li2FeSiO4 is deemed to be a potential candidate for large-scale applications because of its abundance, low cost and high safety, etc. Unfortunately, its low conductivity, resulting in poor rate performance, has become a main obstacle to its applications in power battery and energy storage system. In this work, C-Ag coated Li2FeSiO4 is introduced to improve the innate electronic conductivity and Li-ion diffusion ability. The results demonstrate that Li2FeSiO4/C/Ag composite exhibits better electrochemical performance. It possesses a specific discharge capacity of 152, 121, 108 mA∙h/g at 0.2C, 5C and 10C, respectively. At the same time, the Li2FeSiO4 /C/Ag composite shows good cycle stability and a capacity retention ratio of 97.9% after 100 cycles at 1C.

Keywords

lithium-ion batteries / cathode material / Li2FeSiO4 / pitch / C-Ag coating

Cite this article

Download citation ▾
Yi-qun Tang, Xi Liu, Xiao-bing Huang, Xiang Ding, Shi-biao Zhou, Yuan-dao Chen. Synthesis and electrochemical properties of Li2FeSiO4/C/Ag composite as a cathode material for Li-ion battery. Journal of Central South University, 2019, 26(6): 1443-1448 DOI:10.1007/s11771-019-4100-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuX-y, YangR, DengK-f, RenBing. Progress in the structure and modification of orthosilicates as cathode materials [J]. Battery Bimonthly, 2014, 44(5): 303-306

[2]

BaoL-y, GaoW, SuY-f, WangZ, LiN, ChenS, WuFen. Progression of the silicate cathode materials used in lithium ion batteries [J]. Chinese Science Bulletin, 2013, 58(9): 783-792

[3]

ZhuH, WuX-z, LingZ, ZhangY-xiang. Superior electrochemical capability of Li2FeSiO4/C/G composite as cathode material for Li-ion batteries [J]. Electrochimica Acta, 2014, 117(4): 34-40

[4]

DominkoR. Li2FeSiO4 (M=Fe and/or Mn) cathode materials [J]. Journal of Power Sources, 2008, 184(2): 462-468

[5]

ZhangS, DengC, FuB L, YangS Y, MaL. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries [J]. Journal of Electroanalytical Chemistry, 2010, 644(2): 150-154

[6]

ZuoP-j, WangT, ChengG-y, ChengX-q, DuC-y, YinG-ping. Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries [J]. RSC Advances, 2012, 2(17): 6994-6998

[7]

WangK, RenW-j, YangJ-l, TanR, LiuY-d, PanFeng. Depolarization effects of Li2FeSiO4 nanocrystals wrapped in different conductive carbon networks as cathodes for high performance lithium-ion batteries [J]. RSC Advances, 2016, 6(53): 47723-47729

[8]

ZhaoY, LiJ-x, WangN, WuC-x, DingY-h, GuanL- hui. In situ generation of Li2FeSiO4 coating on MWNT as a high rate cathode material for lithium ion batteries [J]. Journal of Materials Chemistry, 2012, 22(36): 18797-18800

[9]

WangK, TengG-f, YangJ-l, TanR, DuanY-d, ZhengJ-x, PanFeng. Sn(II,IV) steric and electronic structure effects enable self-selective doping on Fe/Si-sites of Li2FeSiO4 nanocrystals for high performance lithium ion batteries [J]. Journal of Materials Chemistry A, 2015, 3(48): 24437-24445

[10]

ChenW-h, ZhuD, LiY-y, LiC-p, FengX-m, GuanX-x, YangC-c, ZhangJ-m, MiL-wei. How to synthesize pure Li2-xFeSi1-xPxO4/C(x=0.03-0.15) easily from low-cost Fe3+ as cathode materials for Li-ion batteries [J]. Dalton Transactions, 2015, 44(33): 14805-14812

[11]

ArachiY, HiguchiY, NakamuraR, TakagiY, TabuchiM. Synthesis and electrical property of Li2-xFeSi1-xPxO4 as positive electrodes by spark-plasma-sintering process [J]. Journal Power Sources, 2013, 244: 631-635

[12]

GaoH-y, HuZ, YangJ-g, ChenJun. Li2-xFe1-xAlxSiO4/C nanocomposites cathodes for lithium-ion batteries [J]. Energy Technology, 2014, 2(4): 355-361

[13]

QiuH-l, YueH-j, JuY-m, ZhangY-q, GuoZ-d, WangC-z, ChenG, WeiY-j, ZhangDong. Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping [J]. Electrochimica Acta, 2016, 188: 636-644

[14]

YangJ-l, ZhengJ-x, KangX-c, TengG-f, HuL, TanR, WangK, SongX-h, MuS-c, PanFeng. Tuning structural stability and lithium-storage properties by d-orbital hybridization substitution in full tetrahedron Li2FeSiO4 nanocrystal [J]. Nano Energy, 2016, 20: 117-125

[15]

QuL, LuoD, FangS, QuL, LuoD, FangS-h, LiuY, YangL, HiranoS-i, YangC-chen. Mg-dopedLi2FeSiO4/C as high-performance cathode material for lithium-ion battery [J]. Journal of Power Sources, 2016, 307: 69-76

[16]

HaoH, WangJ, LiuJ, HaoH, WangJ-b, LiuJ-l, HuangT, YuA-shui. Synthesis characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries [J]. Journal of Power Sources, 2012, 210(9): 397-401

[17]

ZhangS, DengC, FuB L, ZhangS, DengC, FuB L, YangS Y, MaL. Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries [J]. Electrochimica Acta, 2010, 55(28): 8482-8489

[18]

DengC, ZhangS, YangS Y, FuB L, MaL. Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2011, 196(1): 386-39

[19]

GongZ L, LiY X, HeG N, LiJ, YangY. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process [J]. Electrochemical Solid-State Letters, 2008, 11(5): A60-A63

[20]

ZhangS, DengC, YangS-yu. Preparation of nano-Li2FeSiO4 as cathode material for lithium-ion batteries [J]. Electrochemical Solid-State Letters, 2009, 12(7): A136-A139

[21]

YanZ-p, CaiS, ZhouX, ZhaoY-m, MiaoL-juan. Sol-gel synthesis of nanostructured Li2FeSiO4/C as cathode material for lithium ion battery [J]. Journal of the Electrochemical Society, 2012, 159(6): A894-A898

[22]

RangappaD, MurukanahallyK D, TomaiT, UnemotoA, HonmaI. Ultrathin nanosheets of Li2MSiO4 (M=Fe, Mn) as high-capacity Li-ion battery electrode [J]. Nano Letters, 2012, 12(3): 1146-1151

[23]

HasegawaG, SannobeM, IshiharaY, KanamoriK, NakanishiK, AbeT. New Li2FeSiO4-carbon monoliths with controlled macropores: Effects of pore properties on electrode performance [J]. Physical Chemistry Chemical Physics Pccp, 2013, 15: 8736-8743

[24]

ChenZ-x, QiuS, CaoY-l, QianJ-f, AiX-p, XieK, HongX-b, YangH-xi. Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1(16): 4988-4992

[25]

HuangX-b, LiX, WangH-y, PanZ-l, QuM-z, YuZ-long. Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries [J]. Solid State Ionics, 2010, 181: 1451-1455

[26]

NishimuraS C, HayaseS, KannoR. Structure of Li2FeSiO4 [J]. J Am Chem Soc, 2008, 130: 13212-13213

[27]

AvciE, MazmanM, UzunD, BicerE, SenerT. High performance LiFePO4/CNcathode material promoted by polyaniline as carbon-nitrogen precursor [J]. Journal of Power Sources, 2013, 240(1): 328-337

[28]

ZhangJ-w, CaiY-r, WuJ, YaoJ-ming. Graphene oxide-confined synthesis of Li4Ti5O12 microspheres as high-performance anodes for lithium ion batteries [J]. Electrochimica Acta, 2015, 165: 422-429

[29]

NienY H, CareyJ R, ChenJ S. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors [J]. Journal of Power Sources, 2009, 193: 822-827

[30]

SunD, ZhuX-b, LuoB, ZhangY, TangY-g, WangH-y, WangL-zhou. New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery [J]. Advanced Energy Materials, 20181801197

[31]

LvY-r, ZhangL, ChengG, WangP-f, ZhangT-z, LiC-c, JiangY-q, HeZ-x, DaiL, WangLing. Preparation of carbon nanosheet by molten salt route and its application in catalyzing VO2+/VO2+ redox reaction [J]. Journal of the Electrochemical Society, 2019, 166(6): A953-A959

[32]

XiaoW, WangZ-y, ZhangY, FangR, YuanZ, MiaoC, YanX-m, JiangYu. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries [J]. Journal of Power Sources, 2018, 382: 128-134

[33]

XiaoW, WangZ-y, MiaoC, MeiP, ZhangY, YanX-m, TianM-l, JiangY, LiuJ-jing. Electrolytes doped with spherical-like and honeycomb structural Li0.1Ca0.9TiO3 particles [J]. Front Chem, 2018, 6: 525

[34]

HeZ-x, LiM-m, LiY-h, LiC-c, YiZ, ZhuJ, DaiL, MengW, ZhouH-z, WangLing. ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery [J]. Electrochimica Acta, 2019, 309166-176

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/