Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes

Yi-feng Huo , Ning Qin , Cheng-zhu Liao , Hui-fen Feng , Ying-ying Gu , Hua Cheng

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1416 -1425.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1416 -1425. DOI: 10.1007/s11771-019-4097-4
Article

Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes

Author information +
History +
PDF

Abstract

Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method. Conditional experiments have been conducted to optimize the processing parameters including temperature, pH, reaction duration, precipitator types to obtain phase-pure Ce2Sn2O7. The crystal structure, morphology and sizes and specific surface area have been characterized by X-ray diffractometer (XRD), Raman spectrum, transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), and Brunauer-Emmett-Teller (BET). The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries. When testing as supercapacitors, a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86% after 5000 cycle have been achieved. When targeted for anode material for lithium ion batteries, the nanocubes deliver a high specific reversible capacity of more than 900 mA∙h/g at 0.05C rate. The rate capability and cycling performance is also very promising as compared with the traditional graphite anode.

Keywords

supercapacitors / lithium ion batteries / composite oxides / ultrafine nanoparticles / hydrothermal / pyrochlore

Cite this article

Download citation ▾
Yi-feng Huo, Ning Qin, Cheng-zhu Liao, Hui-fen Feng, Ying-ying Gu, Hua Cheng. Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes. Journal of Central South University, 2019, 26(6): 1416-1425 DOI:10.1007/s11771-019-4097-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ConwayB E, PellW G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J]. Journal of Solid State Electrochemistry, 2003, 7(9): 637-644

[2]

HuJ, LiM C, LvF C, YanyM Y, TaoP P, TangY G, LiuH T, LuZ G. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors [J]. Journal of Power Sources, 2015, 294: 120-127

[3]

SimonP, GogotsiY. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7: 845-854

[4]

ChengH, LuZ G, DengJ Q, ChungC Y, ZhangK L, LiY Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes [J]. Nano Research, 2010, 3: 895-901

[5]

LianJ, WangL M, WangS X, ChenJ, BoatnerL A, EwingR C. Nanoscale manipulation of pyrochlore: New nanocomposite ionic conductors [J]. Physical Review Letters, 2001, 87: 145901

[6]

ZhaoJ H, KunkelH P, ZhouX Z, WilliamsG W, SubramanianM A. Critical behavior of the magnetoresistive pyrochlore Tl2Mn2O7 [J]. Physical Review Letters, 1999, 83219-222

[7]

LutiqueS, KoningsR J M, RondinellaV V, SomersJ, WissT. The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel [J]. Journal of Alloys and Compounds, 2003, 352: 1-5

[8]

NagA, DasguptaP, JanaY M, GhoshD. A study on crystal field effect and single ion anisotropy in pyrochlore europium titanate (Eu2Ti2O7) [J]. Journal of Alloys and Compounds, 2004, 384: 6-11

[9]

SohnJ M, KimM R, WooS I. The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst [J]. Catalysis Today, 2003, 83: 289-297

[10]

AliN, HillP, ZhangX, WillisF. Magnetization and thermoremanent magnetization of Tb2Mo2O7 and Y2Mo2O7 spin glasses [J]. Journal of Alloys and Compounds, 1992, 181: 281-285

[11]

YangM Y, ChengH, GuY Y, SunZ F, HuJ, CaoL J, LvF C, LiM C, WangW X, WangZ Y, WuS F, LiuH T, LuZ G. Facile electro-deposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors [J]. Nano Research, 2015, 8(8): 2744-2754

[12]

SharmaN, SubbaR G V, ChowdariB V R. Anodic properties of tin oxides with pyrochlore structure for lithium ion batteries [J]. Journal of Power Sources, 2006, 159: 340-344

[13]

MimsC A, JacobsonA J, HallR B, LewandoskiJ T. Methane oxidative coupling over nonstoichiometric bismuth-tin pyrochlore catalysts [J]. Journal of Catalysis, 1995, 153: 197-207

[14]

ChengH, WangL P, LuZ G. A general aqueous sol-gel route to Ln2Sn2O7 nanocrystals [J]. Nanotechnology, 2008, 19: 025706

[15]

YuT H, TullerH L. Ionic conduction and disorder in the Gd2Sn2O7 pyrochlore system [J]. Solid State Ionics, 1996, 86-88177-182

[16]

PoratO, HeremansC, TullerH L. Stability and mixed ionic electronic conduction in Gd2(Ti1−xMox)2O7 under anodic conditions [J]. Solid State Ionics, 1997, 94: 75-83

[17]

SickafusK E, MinerviniL, GrimesR W, ValdezJ A, IshimaruM, LiF, McclellanK J, HartmannT. Radiation tolerance of complex oxides [J]. Science, 2000, 289: 748-751

[18]

LiK W, WangH, HuiY. Hydrothermal preparation and photocatalytic properties of Y2Sn2O7 nanocrystals [J]. Journal of Molecular Catalysis A: Chemical, 2006, 249: 65-70

[19]

TollaB, DemourguesA, PouchardM, RabaraelL, FournesL, WattiauxA. Oxygen exchange properties in the new pyrochlore solid solution Ce2Sn2O7-Ce2Sn2O8 [J]. Comptes Rendus de l' Academie des Sciences Serie IIc: Chemie, 1999, 2: 139-146

[20]

Ismumandar, KennedyB J, HunterB A, VogtT. Bonding and structural variations in doped Bi2Sn2O7 [J]. Journal of Solid State Chemistry, 1997, 131: 317-325

[21]

WangS W, LuM K, ZhouG J, ZhouY Y, ZhangH P, WangS F, YangZ S. Synthesis and luminescence properties of La2−xRExSn2O7 (RE=Eu and Dy) Phosphor nanoparticles [J]. Materials Science and Engineering: B, 2006, 133: 231-234

[22]

MoonJ, AwanoM, MaedaK. Hydrothermal synthesis and formation mechanisms of lanthanum tin pyrochlore oxide [J]. Journal of the American Ceramic Society, 2001, 84: 2531-2536

[23]

LuZ G, WangJ W, TangY G, LiY D. Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals [J]. Journal of Solid State Chemistry, 2004, 177: 3075-3079

[24]

ZhuH L, JinD L, ZhuL M, YangH, YaoK H, XiZ Q. A General hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln=Y, La-Yb) [J]. Journal of Alloys and Compounds, 2008, 464: 508-513

[25]

ZengJ, WangH, ZhangY C, ZhuM K, YanH. Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes [J]. Journal of Physical Chemistry C, 2007, 111: 11879-11887

[26]

HuangH, MiaoX, LiaoN, WangL C, JinD L. Study on the oxygen exchange capacities of Ce2Sn2O7 pyrochlore [J]. Russian Journal of Inorganic Chemistry, 2011, 56: 1621-1624

[27]

YangJ Y, SuY C, LiuX Y. Hydrothermal synthesis, characterization and optical properties of La2Sn2O7: Eu3+ micro-octahedra [J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 535-543

[28]

GlerupM, NidlsenO F, PoulsenF W. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling [J]. Journal of Solid State Chemistry, 2001, 160: 25-32

[29]

WuS F, WangW X L M C, CaoL J, LvF C, YangM Y, WangZ Y, ShiY, NanB, YuS C, SunZ F, LiuY, LuZ G. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate [J]. Nature Communications, 2016, 7: 13318

[30]

GuptaH C, BrownS, RaniN, GohelV B. A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores [J]. International Journal of Inorganic Materials, 2001, 3983-986

[31]

VandenborreM T, HussonE, ChatryJ P, MichelD. Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields [J]. Journal of Raman Spectroscopy, 1983, 14: 63-71

[32]

XuM W, KongL B, ZhouW J, LiH L. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins [J]. The Journal of Physical Chemistry C, 2007, 111: 19141-19147

[33]

ToupinM, BrousseT, BelangerD. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials, 2004, 16: 3184-3190

[34]

LiF H, SongJ F, YangH F, GanS Y, ZhangQ X, HanD X, Arilvaska, LiN. One-step synthesis of Graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors [J]. Nanotechnology, 2009, 20: 455602

[35]

PangS C, AndersonM A, ChapmanT W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of the Electrochemical Society, 2000, 147444-450

[36]

SubramanianV, ZhuH W, VajtaiR, AjayanP M, WeiB Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J]. The Journal of Physical Chemistry B, 2005, 109: 20207-20214

[37]

LeeH Y, GoodenoughJ B. Supercapacitor behavior with KCl electrolyte [J]. Journal of Solid State Chemistry, 1999, 144: 220-223

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/