Preparation and application of perovskite-type oxides for electrocatalysis in oxygen/air electrodes
Shu-xin Zhuang , Jia-yi He , Wei-peng Zhang , Nan Zhou , Mi Lu , Ji-qiong Lian , Jing-jing Sun
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (6) : 1387 -1401.
Preparation and application of perovskite-type oxides for electrocatalysis in oxygen/air electrodes
Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this review. Various fabrication methods of these oxides are introduced in detail, and their advantages and disadvantages are analyzed. Different preparation methods adopted have great influence on the morphologies and physicochemical properties of perovskite-type oxides. As a bifunctional electrocatalyst, perovskite-type oxides are widely used in rechargeable metal-air batteries. The relationship between the preparation methods and the performances of oxygen/air electrodes are summarized. This work is concentrated on the structural stability, the phase compositions, and catalytic performance of perovskite-type oxides in oxygen/air electrodes. The main problems existing in the practical application of perovskite-type oxides as bifunctional electrocatalysts are pointed out and possible research directions in the future are recommended.
perovskite-type oxides / electrocatalyst / preparation / oxygen/air electrode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
ZHU Xin-hua, LIU Zhi-guo, MING Nai-ben. Perovskite oxide nanotubes: Synthesis, structural characterization, properties and applications [J]. J Mater Chem, 2010, 20: 4015–4030. DOI: 10.1039/b923119f. |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
ZHANG S, XIA R, SHROUT T R, ZANG G, WANG J. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics [J]. J Appl Phys, 2006, 100: 104108–6. DOI: 10.1063/1.2382348. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
AMAN D, ZAKI T, MIKHAIL S, SELIM S A. Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion [J]. Catal Today, 2011, 164: 209–213. DOI: 10.1016/j.cattod.2010.11.034. |
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
XIAO Ping, ZHU Jun-jiang, Li Hai-long, JIANG Wen, WANG Tao, ZHU Yu-jun, ZHAO Yan-xi, LI Jin-lin. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation [J]. Chem Cat Chem, 2014, 6: 1774–1781. DOI: 10.1002/cctc. 201402064. |
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
FU G, YAN X, CHEN Y, XU L, SUN D, LEE J M, TANG Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO Particles [J]. Adv Mater, 2018, 30: 1704609. DOI: 10.1002/adma.201704609. |
| [88] |
|
| [89] |
HUANG S F, HSU Y Y, CHANG C J, HSU C S, SUEN N T, CHAN T S, CHEN M H. Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction [J]. Adv Energy Mater, 2018, 8: 1701686. DOI: doi.org/10.1002/aenm.201701686. |
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
CHANG Y M, WU P W, WU C Y, HSIEH Y F, CHEN J Y. Mechanical alloying preparation of La0.6Ca0.4CoIr0.25O3.5-d as a bifunctional electrocatalyst in alkaline electrolyte [J]. Electrochem Solid State Lett, 2008, 11: B47-B50. DOI: 10.1149/1.2835200. |
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
/
| 〈 |
|
〉 |