\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} }$$\end{document}
" />
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} }$$\end{document}
" />
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} }$$\end{document}
" />

Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach

Xiang Fan , P. H. S. W. Kulatilake , Xin Chen , Ping Cao

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 638 -645.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 638 -645. DOI: 10.1007/s11771-015-2565-z
Article

Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach

Author information +
History +
PDF

Abstract

The ratio of crack initiation stress to the uniaxial compressive strength (SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\left( {S_{A,S_{CI,B} } /S_{A,S_{UC,B} } } \right)$$\end{document}
were studied by performing numerical stress analysis on blocks having multi flaws at close spacing’s under uniaxial loading using PFC3D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found between
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
and β; however, the average
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
seems to slightly decrease with increasing k. The variability of
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
is found to increase with k. Based on the cases studied in this work,
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
ranges between 0.3 and 0.5. This range is quite close to the range of 0.4 to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 for
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
is obtained for k=0.8. For the remaining k values the variability of
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} } /S_{A,S_{UC,B} }$$\end{document}
can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.

Keywords

jointed rock / multi flaws / uniaxial loading / PFC3D model / crack initiation stress (SCI,B) /

')">axial strain at crack initiation stress
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{A,S_{CI,B} }$$\end{document}

Cite this article

Download citation ▾
Xiang Fan, P. H. S. W. Kulatilake, Xin Chen, Ping Cao. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach. Journal of Central South University, 2015, 22(2): 638-645 DOI:10.1007/s11771-015-2565-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DyskinA V, GermanovichL N, UstinovK B. A 3-D model of wing crack growth and intersection [J]. Engineering Fracture Mechanics, 1999, 63(1): 81-110

[2]

GehleC, KutterH K. Breakage and shear behavior of intermittent rock joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(5): 687-700

[3]

HoekE, BieniawskiZ T. Brittle rock fracture propagation in rock under compression [J]. International Journal of Fracture Mechanics, 1965, 1(3): 137-155

[4]

KulatilakeP H S W, HeW, UmJ, WangH. A physical model study of jointed rock mass strength under uniaxial compressive loading [J]. International Journal of Rock Mechanics & Rock Engineering, 1997, 34(3/4): 161-165

[5]

YangY F, TangC A, XiaK W. Study on crack curving and branching mechanism in quasi-brittle materials under dynamic biaxial loading [J]. International Journal of Fracture, 2012, 177(1): 53-72

[6]

SahouryehE, DyskinA V, GermanovichL N. Crack growth under biaxial compression [J]. Engineering Fracture Mechanics, 2002, 69(18): 2187-2198

[7]

BaudP, ReuschleT, CharlezP. An improved wing crack model for the deformation and failure of rock in compression [J]. International Journal of Rock Mechanics Mining Sciences & Geomechanics Abstract, 1996, 33(5): 539-542

[8]

LajtaiE Z. Brittle fracture in compression [J]. International Journal of Fracture, 1974, 10(4): 525-536

[9]

ParkC H, BobetA. Crack coalescence in specimens with open and closed flaws: A comparison [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(5): 819-829

[10]

LeeH, JeonS. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression [J]. Internatinal Journal of Solid, and Structures, 2011, 48(6): 979-999

[11]

BobetA. The initiation of secondary cracks in compression [J]. Engineering Fracture Mechanics, 2000, 66(2): 187-219

[12]

ChenX, LiaoZ-h, PengXi. Deformability characteristics of jointed rock masses under unaixal compression [J]. International Journal of Mining Science and Technology, 2012, 22(2): 213-221

[13]

KulatilakeP H S W, ParkJ, MalamaB. A new rock mass failure criterion for biaxial loading conditions [J]. Geotecnical and Geological Engineering, 2006, 24(4): 871-888

[14]

BobetA, EinsteinH H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888

[15]

SinghM, RaoK S. Empirical methods to estimate the strength of jointed rock masses [J]. Engineering Geology, 2005, 77(1): 127-137

[16]

WongR H C, ChauK T, TangC A, LinP. Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 909-924

[17]

WongR H C, LinP, TangC A, ChauK T. Creeping damage around an opening in rock-like material containing non-persistent joints [J]. Engineering Fracture Mechanics, 2002, 69(17): 2015-2027

[18]

PrudencioM, van Sint-JanM. Strength and failure modes of rock mass models with non-persistent joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(6): 890-902

[19]

van de SteenB, VervoortA, NapierJ A L. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples [J]. International Journal of Fracture, 2001, 108(2): 165-191

[20]

GhazvinianA, SarfaraziY, SchubertW, BlumelM. A study of the failure mechanism of planar non-persistent open joints using PFC2D [J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 677-693

[21]

WongR H C, EinsteinH H. Crack coalescence in molded gypsum and Carrara marble: Part I. macroscopic observations and interpretation [J]. Rock Mechanics and Rock Engineering, 2009, 42: 475-511

[22]

BobetA, EinsteinH H. Numerical modeling of fracture coalescence in a model rock material [J]. International Journal of Fracture, 1998, 92(3): 221-252

[23]

TangC A, LinP, WongR H C, ChauK Y. Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 925-939

[24]

ChenX, LiaoZ-H, PengXi. Cracking process of rock mass models under uniaxial compression [J]. Journal of Central South University, 2013, 20(6): 1661-1678

[25]

de BremaeckerJ C, FerrisM C. Numerical models of shear fracture propagation [J]. Engineering Fracture Mechanics, 2004, 71(15): 2161-2178

[26]

SagongM, BobetA. Coalescence of multiple flaws in a rock-model material in uniaxial compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 229-241

[27]

ChanH C M, LiV, EinsteinH H. A hybridized displacement discontinuity and indirect boundary element method to model fracture propagation [J]. International Journal of Fracture, 1990, 45(4): 263-282

[28]

BobetA. A hybridized displacement discontinuity method for mixed mode I–II–II loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(8): 1121-1134

[29]

TangC A, KouS Q. Crack propagation and coalescence in brittle materials under compression [J]. Engineering Fracture Mechanics, 1998, 61(3): 311-324

[30]

TangC A, LiuH, LeeP K K, Tsuiy, ThamL G. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I: effect of heterogeneity [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555-569

[31]

TangC A, ThamL G, LeeP K K, TsuiY, LiuH. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II: constraint, slenderness and size effect [J]. Internation, Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 571-583

[32]

ZhangH-q, HeY-n, HanL-j, et al. . Micro-fracturing characteristics in brittle material containing structural defects under biaxial loading [J]. Computational Materials Science, 2009, 46(3): 682-686

[33]

LinP, WongR H C, ChauK T, TangC A. Multi-crack coalescence in rock-like material under uniaxial and biaxial loading [C]. 4th International Conference on Fracture and Strength of Solids. Pohang, Korea, 2000, 183/187: 809-814

[34]

CundallP A, StrackO D L. A discrete numerical model for granular assembles [J]. Geotechnique, 1979, 29(1): 47-65

[35]

KulatilakeP H S W, MalamaB, WangJ. Physical and particle flow, modeling of jointed rock block behavior under uniaxial loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(5): 641-657

[36]

ZhangX-p, WongL N Y. Cracking process in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach [J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 711-737

[37]

ZhangX-p, WongR H C. Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle, model approach [J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001-1021

[38]

BahaaddiniM, SharrockG, HebblewhiteB K. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression [J]. Computers and Geotechnics, 2013, 49: 206-225

[39]

MartinC D, ChandlerN A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Engineering, 1994, 31(6): 643-659

[40]

BraceW F, PauldingB W, ScholzC. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research, 1966, 71(16): 3939-3953

[41]

Itasca Consulting Group.PFC3D user’s manual [R], 2003, Minneapolis: Minnesota, USA, ICG

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/