Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map
Yu Song , Qing-chao Jiang , Xue-feng Yan
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 601 -609.
Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern (SP) framework integrated with a self-organizing map (SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman (TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes. Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.
statistic pattern framework / self-organizing map / fault diagnosis / process monitoring
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
/
| 〈 |
|
〉 |