Novel LDNMOS embedded SCR with strong ESD robustness based on 0.5 μm 18 V CDMOS technology

Yang Wang , Xiang-liang Jin , A-cheng Zhou

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 552 -559.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 552 -559. DOI: 10.1007/s11771-015-2555-1
Article

Novel LDNMOS embedded SCR with strong ESD robustness based on 0.5 μm 18 V CDMOS technology

Author information +
History +
PDF

Abstract

A novel LDNMOS embedded silicon controlled rectifier (SCR) was proposed to enhance ESD robustness of high-voltage (HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional (2D) device simulation and a transmission line pulse (TLP) testing were used to analyze the working mechanism and ESD performance of the novel device. Compared with the traditional GG-LDNMOS, the secondary breakdown current (It2) of the proposed device can successfully increase from 1.146 A to 3.169 A with a total width of 50 μm, and ESD current discharge efficiency is improved from 0.459 mA/μm2 to 1.884 mA/μm2. Moreover, due to their different turn-on resistances (Ron), the device with smaller channel length (L) owns a stronger ESD robustness per unit area.

Keywords

LDNMOS embedded SCR / TCAD simulation / electrostatic discharge (ESD) robustness / transmission line pulse (TLP)

Cite this article

Download citation ▾
Yang Wang, Xiang-liang Jin, A-cheng Zhou. Novel LDNMOS embedded SCR with strong ESD robustness based on 0.5 μm 18 V CDMOS technology. Journal of Central South University, 2015, 22(2): 552-559 DOI:10.1007/s11771-015-2555-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JEDEC JS-001-2012. Electrostatic discharge sensitivity testing human body model (HBM) [S].

[2]

JESD22-A115C. Electrostatic discharge sensitivity testing machine model (MM) [S].

[3]

ChenW-y, KerM-dou. New layout arrangement to improve ESD robustness of large-array high-voltage nLDMOS[J]. IEEE Transactions on Electron Device Letters, IEEE, 2010, 31(2): 159-161

[4]

WangC-t, KerM-dou. ESD protection design with lateral DMOS transistor in 40-V BCD technology[J]. Electron Devices, 2010, 57(12): 3395-3404

[5]

MergensM P J, WilkeningW, MettlerS, WolfH, SrickerA, FichtnerW. Analysis of lateral DMOS power devices under ESD stress conditions[J]. IEEE Transactions on Electron Devices, 2000, 47(11): 2128-2137

[6]

ShrivastavaM, GossnerH. A review on the ESD robustness of drain extended MOS devices [J]. IEEE Transactions on Device and Materials Reliability, 2012, 12(4): 615-625

[7]

LeeJ H, SuH D, ChanC L, YangD H, ChenJ F, WuK M. The influence of the layout on the ESD performance of HV-LDMOS [C]. Power Semiconductor Devices & IC’s (ISPSD), 2010 22nd International Symposium on. IEEE, 2010, Hiroshima, IEEE: 303-306

[8]

FujiwaraS, NakayaK, HiranoT, OkudaT, WatanabeY. Source engineering for ESD robust NLDMOS[C]. Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2011 33rd. IEEE, 2011, Anaheim, USA, IEEE: 1-6

[9]

SalmanA A, FarbizF, AppaswamyA, KunzH, BoselliG, DissegnaM. Engineering optimal high current characteristics of high voltage DENMOS [C]. Reliability Physics Symposium (IRPS), 2012 IEEE International, 2012, Anaheim, USA, IEEE: 3E.1. 1-3E.1.6

[10]

ChenS-h, KerM-dou. Optimization on NMOS-based power-rail ESD clamp circuits with gate-driven mechanism in a 0.0.13-μm CMOS technology [C]. Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on, 2008, St. Juliens, IEEE: 666-669

[11]

ChenT-y, KerM-dou. Investigation of the gate-driven effect and substrate-trigger effect on ESD robustness [J]. IEEE Tran Sations on Device and Materials Reliability, 2002, 1(4): 190-203

[12]

ChenW-y, KerM-d, JouY-n, HuangY-j, LinG-lih. Improvement on ESD robustness of lateral DMOS in high-voltage CMOS ICs by body current injection [C]. Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2009, Taipei, IEEE: 385-388

[13]

KerM-d, WuC-yu. Modeling the positive-feedback regenerative process of CMOS latchup by a positive transient pole method. I. Theoretical derivation [J]. Transactions on Electron Devices IEEE, 1995, 42(6): 1141-1148

[14]

KerM-d, HsuS F. Component-level measurement for transient-induced latch-up in CMOS ICs under system-level ESD considerations [J]. IEEE Transactions on Device and Materials Reliability, 2006, 6(3): 461-472

[15]

KerM D, HsuS F. Physical mechanism and device simulation on transient-induced latchup in CMOS ICs under system-level ESD test [J]. IEEE Transactions on Electron Devices, 2005, 52(8): 1821-1831

[16]

LiM-z, WeiG-p, ChenX-bi. Analysis of local electro-thermal effects of LDMOS power devices [J]. Journal of Semiconductors, 2005, 26(9): 1823-1828

[17]

SunW-f, QianQ-s, WangW, YiY-bo. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions [J]. Journal of Semiconductors, 2009, 30(10): 104004-1-3

[18]

EsmarkK, FurbockC, GossnerH, GroosG, LitzenbergerM, PoganyD, ZelsacherR, StecherM, GornikE. Simulation and experimental study of temperature distribution during ESD stress in smart-power technology ESD protection structures [C]. Reliability Physics Symposium, 2000. Proceedings. 38th Annual 2000 IEEE International, 2000, San Jose, USA, IEEE: 304-309

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/