Physically-based modeling for hole scattering rate in strained Si1−xGex/(100)Si

Bin Wang , Hui-yong Hu , He-ming Zhang , Jian-jun Song , Yu-ming Zhang

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 430 -436.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (2) : 430 -436. DOI: 10.1007/s11771-015-2539-1
Article

Physically-based modeling for hole scattering rate in strained Si1−xGex/(100)Si

Author information +
History +
PDF

Abstract

Based on the Fermi’s golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate (SR) in strained Si1−xGex/(100)Si was presented, which takes into account a variety of scattering mechanisms, including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1−xGex/(100)Si also decreases obviously with increasing Ge fraction (x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1−xGex/(100) Si decreases by about 58%.

Keywords

strained Si1−xGex / biaxial stress / hole scattering rate / effective mass

Cite this article

Download citation ▾
Bin Wang, Hui-yong Hu, He-ming Zhang, Jian-jun Song, Yu-ming Zhang. Physically-based modeling for hole scattering rate in strained Si1−xGex/(100)Si. Journal of Central South University, 2015, 22(2): 430-436 DOI:10.1007/s11771-015-2539-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangB, CaiMing. Advanced strain engineering for state-of-the-art nanoscale CMOS technology [J]. Sci China Info Sci, 2011, 54(5): 946-958

[2]

WeiB-l, DaiY-j, ZhangX-x, LuY-jie. 1.0 V low voltage CMOS mixer based on voltage control load technique [J]. Journal of Central South University of Technology, 2011, 18(5): 1572-1578

[3]

SongQ-w, ZhangY-m, ZhangY-m, TangX-yan. Simulation study on 4H-SiC power devices with high-k dielectric FP termination [J]. Diam Relat Mater, 2012, 22: 42-47

[4]

Murray ConalE, PolvinoS M, NoyanI C, MaserJ, HoltM. Probing strain at the nanoscale with X-ray diffraction in microelectronic materials induced by stressor elements [J]. Thin Solid Films, 2013, 530: 85-90

[5]

SongJ-j, ZhangH-m, HuH-y, DaiX-y, XuanR-xi. Valence band structure of strained Si/(111)Si1−xGex [J]. Sci China Phys Mech Astron, 2010, 53(3): 454-457

[6]

WangB, ZhangH-m, HuH-y, ShuB, ZhouC-y, LiY-chen. Analytical model for quasi-static C-V characteristics of strained-Si/SiGe pMOS capacitor [J]. Solid State Electron, 2013, 79: 258-261

[7]

MoonD H, SongJ J, KimO. Simplified model of the effect of source/drain doping gradient on capacitance and resistance in a double-gate metal-oxide-semiconductor field-effect transistor [J]. Jpn J Appl Phys, 2011, 50(6): 06GF16

[8]

LeeM H, ChangS T, MaikapS, PengC Y, LeeC H. High Ge content of SiGe channel pMOSFET on Si^(110) surfaces [J]. IEEE Trans Electron Devices, 2010, 31(2): 141-143

[9]

MajhiP, KalraP, HarrisR, ChoiK J, HehD, OhJ, KellyD, ChoiR, ChoB J, BanerjeeS, TsaiW, TsengH, JammyR. Demonstration of high-performance PMOSFETs using Si-SixGe1−x-Si quantum wells with high-k/metal-gate stacks [J]. IEEE Electron Device Lett, 2008, 29(1): 99-101

[10]

YehW K, ChenY T, HuangF S, HsuC W, ChenC Y, FangY K, GanK J, ChenP Y. The improvement of high-k/metal gate pMOSFET performance and reliability using optimized Si cap/SiGe channel structure [J]. IEEE Trans Device Mat Re, 2011, 11(1): 7-12

[11]

WangB, ZhangH-m, HuH-y, ZhangY-m, ZhouC-y, LiY-chen. Physically based analytical model for plateau in gate C-V characteristics of strained silicon pMOSFET [J]. Journal Central South University, 2013, 20(9): 2366-2371

[12]

WangE X, MatagneP, ShifrenL. Physics of hole transiport in strained silicon MOSFET inversion layers [J]. IEEE Trans Electron Devices, 2006, 53(8): 1840-1851

[13]

GomezL, Ni ChleirighN, HashemiP, HoytJ L. Enhanced hole mobility in high ge content asymmetrically strained-SiGe p-MOSFETs [J]. IEEE Electron Device Lett, 2010, 31(8): 782-784

[14]

ChleirighC N, TheodoreN D, FulkuyamaH, MureS, EhrkeH U, DomenicucciA, HoytJ L. Thickness dependence of hole mobility in ultrathin SiGe-channel p-MOSFETs [J]. IEEE Trans Electron Devices, 2008, 55(10): 2687-2694

[15]

PhamA T, JungermannC, MeinerzhagenB. Physics-based modeling of hole inversion-layer mobility in strained-SiGe-on-insulator [J]. IEEE Trans Electron Devices, 2007, 54(9): 2174-2182

[16]

EmeleusC J, WhallT E, KubiakR A, ParkerE H C, KearneyM J. Scattering mechanisms affecting hole transport in remote-doped Si/SiGe heterostructures [J]. Journal of Applied Physics, 1993, 73(8): 3852-3856

[17]

IkonicZ, HarrisonP, KelsallR W. Intersubband hole-phonon and alloy disorder scattering in SiGe quantum wells [J]. Phys Review B, 2001, 64(24): 245311

[18]

LeitzC W, CurrieM T, LeeM L, ChengZ Y, AntoniadisD A, FitzgeraidE A. Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors [J]. J Appl Phys, 2002, 92(7): 3745-3751

[19]

HoB, XuN, LiuK T. PMOSFET performance enhancement with strained Si1−xGex channels [J]. IEEE Trans Electron Devices, 2012, 59(2): 1468-1474

[20]

KittelCIntroduction to solid state physics [M], 2005, USA, John Wiley & Sons, Inc: 191-213

[21]

GhoshBSemiclassical monte-carlo simulation of nano-scaled semiconductor devices [D], 2007, USA, University of Texas at Austin

[22]

FischettiM V, LauxeS E. Band structure, deformation potentials and carrier mobility in strained Si,Ge and SiGe alloys [J]. J Appl Phys, 1996, 80: 2234-2252

[23]

ZhaoL-x, ZhangH-m, HuH-y, DaiX-y, XuanR-xi. Model of electronical conductivity effective mass of strianed Si [J]. Acta Physica Sinica, 2010, 59(9): 6545-6548

[24]

BriggsP J, WalkerA B, HerbertD C. Calculation of hole mobilities in relaxed and strained SiGe by Monte Carlo simulation [J]. Semicond Sci Technol, 1998, 13: 680-691

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/