Biogenic characteristics of Mesozoic cherts in southern Tibet and its significance

Jun-guo He , Yong-zhang Zhou , Hong-zhong Li

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (4) : 1477 -1490.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (4) : 1477 -1490. DOI: 10.1007/s11771-014-2088-z
Article

Biogenic characteristics of Mesozoic cherts in southern Tibet and its significance

Author information +
History +
PDF

Abstract

The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%–93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism (radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.

Keywords

yialu profile / chert / biological texture / hot spring / southern Tibet

Cite this article

Download citation ▾
Jun-guo He, Yong-zhang Zhou, Hong-zhong Li. Biogenic characteristics of Mesozoic cherts in southern Tibet and its significance. Journal of Central South University, 2014, 21(4): 1477-1490 DOI:10.1007/s11771-014-2088-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuB-junSedimentary petrography [M], 1980, Beijing, Geological Press: 1-497

[2]

OkayA I, NobleP J, TekinU K. Devonian radiolarian ribbon cherts from the Karakaya Complex, Northwest Turkey: Implications for the Paleo-Tethyan evolution [J]. Comptes Rendus Palevol, 2011, 10(1): 1-10

[3]

ZhouY-z, FuW, YangZ-j, NieF-j, LiW, ZhaoW-xia. Geochemical characteristicsof Mesozoic chert from southern Tibet and its petrogenic implications [J]. Acta Petrologica Sinica, 2008, 24(3): 600-608

[4]

CaiF-l, DingL, YueY-hui. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision [J]. Earth and Planetary Science Letters, 2011, 305(1/2): 195-206

[5]

ZhangC-l, ZhouD-w, LuG-x, WangJ-l, WangR-san. Geochemical characteristicsand sedimentary environments of cherts from kumishi ophiolitic mélange in southern Tianshan [J]. Acta Petrologica Sinica, 2006, 221: 57-64

[6]

LiH-z, ZhouY-z, YangZ-j, GuZ-h, LvW-c, HeJ-g, LiW, AnY-ei. Geochemical characteristics and their geological implication of cherts from Bafangshan-Erlihe area in western Qinling orogen [J]. Acta Petrological Sinica, 2009, 25(11): 3094-3102

[7]

McbrideE F, FolkR L. Features and origin of Italian Jurassic radiolarites deposited on continental crust [J]. Journal of Sedimentary Rearch, 1979, 49(3): 837-868

[8]

BarrettT. Stratigraphy and sedimentology of Jurassic bedded cherts overlying ophiolites in the North Apennines, Italy [J]. Sedimentology, 1982, 29: 353-373

[9]

HeJ-g, ZhouY-z, YangZ-j, ZhangC-b, FuWei. Petrologic and geochemical characteristics of the hydrothermal chert in southern Tibet and its geological significance [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1): 74-81

[10]

HeJ-g, ZhouY-z, YangZ-j, LiH-z, WangX-yue. Study on geochemical characteristics and depositional environment of pengcuolin chert, southern tibet [J]. Journal of Jilin University (Earth Science Edition), 2009, 39(6): 1055-1065

[11]

MatsuokaA, YangQ, KobayashiK, TakeiM, NagahashiT, ZengQ-g, WangY-Jing. Jurassic-Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: Records from the Xialu Chert in the Yarlung-Zangbo Suture Zone, southern Tibet [J]. Journal of Asian Earth Sciences, 2002, 20(3): 277-287

[12]

FuW, ZhouY-z, YangZ-j, NieF-j, HeJ-g, LiWen. Chert in southern Tibet, China: Its field geological features and related scientific problems [J]. Geological Bulletin of China, 2007, 26(4): 492-501

[13]

ZhouY-z, FuW, YangZ-j, NieF-j, HeJ-g, ZhaoY-y, LiZ-q, HuP, ShiG-y, LiWen. Microfabrics of chert from Yarlung Zangbo Suture Zone and southern Tibet and its geological implications [J]. Acta Petrologica Sinica, 2006, 22(3): 742-750

[14]

ZahoY-y, HanJ-y, GuoL-h, QianZ-h, ZhouY-z, NieF-j, LiZ-qing. Characteristics and geological significance of mineralogy and fabrics for the hot spring cesium deposit occurring within the Targejia district, Tibet [J]. Acta Petrologica Sinica, 2008, 24(3): 519-530

[15]

AbalosB, PuellesP, Fernandze-armasS, SarrionandiaF. EBSD microfabric study of pre-Cambrian deformations recorded in quartz pebbles from the Sierra de la Demanda (N Spain) [J]. Journal of Structural Geology, 2011, 33(4): 500-518

[16]

LiH-z, YangZ-j, HeJ-g, ZhouY-z, MaZ-w, LvW-c, ZhouG-f, AnY-f, LiW, LiangJ, WangChi. A study of micro-area compositional characteristics and the evolution of cherts from Bafangshan-Erlihe Pb-Zn ore deposit in Western Qinling Orogen [J]. Earth Science Frontiers, 2010, 17(4): 290-298

[17]

LiH-z, ZhouY-z, YangZ-j, ZhouG-f, HeJ-g, MaZ-w, LvW-c, LiW, LiangJ, LuW-ji. Diagenesis and metallogenesis evolution of chert in west qinling orogenic belt: A Case from Bafangshan-Erlihe Pb-Zn ore deposit [J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 715-723

[18]

PirajnoF, GreyK. Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida Basin, Western Australia: A rift-related playa lake and thermal spring environment?. Precambrian Research [J], 2002169-192

[19]

SugitaniK, YamamotoK, WadaH, Binu-lalS S, YoneshigeM. Geochemistry of Archean carbonaceous cherts deposited at immature island-arc setting in the pilbara block, western Australia [J]. Sedimentary Geology, 2002, 151: 45-66

[20]

MigaszewskiZ M, GayuszkaA, DurakiewiczT, StarnawskaE. Middle oxfordian lower-kimmeridgian chert nodules in the holy cross mountains, south-central Poland [J]. Sedimentary Geology, 2006, 187: 11-28

[21]

YuB-s, DongH-l, WidomE, ChenJ-q, LinC-song. Geochemistry of basal Cambrian black shales and cherts from the northern tarim basin, northwest China: Implications for depositional setting and tectonic history [J]. Journal of Asian Earth Sciences, 2009, 34: 418-436

[22]

IkedaM, TadaR, SakumaH. Astronomical cycle origin of bedded chert: A middle triassic bedded chert sequence, Inuyama, Japan [J]. Earth and Planetary Science Letters, 2010, 297: 369-378

[23]

SugaharaH, SugitaniK, Mim UraK, YamashitaF, YamamotoK. A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil-bearing black cherts [J]. Precambrian Research, 2010, 177: 73-87

[24]

VandenboomS H J M, Wan BergenM J, VroonP Z, De VrieS T, NijmanW. Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: Implications for early archaean marine environments [J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 1077-1103

[25]

ZhaoY-y, FanX-t, HanJ-y, DengJ, ZahoX-tao. Geologic and geochemical features and ore forming process for hot spring cesium deposit of Gulu Area, Nagqu Region, Tibet, China [J]. Geological Bulletin of China, 2009, 287: 933-954

[26]

MurryR W, JoneD L, BuchholtzT, BrinkM R. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet [J]. Geology, 1992, 20: 271-274

[27]

ZhangQ, ZhouG-qingOphiolites in China [M], 2001, Beijing, Science Press: 1-182

[28]

WangC-shanThe Xigaze arc basin and Yarlung Zangbo suture [M], 1999, Beijing, Geology press: 1-237

[29]

XiaoX-c, WanZ-y, LiG-c, CaoY-g, ZhouXiang. Yarlung Zangbo sutrue and the structural evolution of the adjacent areas [J]. Acta Geologica Sinica, 1983205-212

[30]

XiaoX-c, LiT-d, LiG-cenStructural lithosphere evolutions of Himalaya [M], 1988, Beijing, Geology press: 1-236

[31]

KnauthL P, LoweD R. Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts [J]. Earth and Planetary Science Letters, 1978, 41: 209-222

[32]

YamamotoK. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes [J]. Sedimentary Geology, 1987, 52(1/2): 65-108

[33]

GirtyG H, RidgeD L, KnaackC, JohnsonD, Al-riyamiR K. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California [J]. Journal of Sedimentary research, 1996, 66(1): 107-118

[34]

TakayanagiY. Depositional environments of bedded cherts of the Shimanto terrane, the KiiPeninsula, inferred from normal paraffin and major element compositions [J]. Journal of Geology Society of Japan, 1998, 104: 501-515

[35]

ArmstrongH A, OwenA W, OwenD F J. Rear earth geochemistry of arenig chert from the ballantrae ophiolite and leadhills imbricate zone, southern scotland: Implications for origin and significance to the caledonian orogeny [J]. Journal of the Geological Society, 1999, 156: 549-560

[36]

OwenA W, ArmstrongH A, FloyJ D. Rare earth element geochemistry of upper Ordovician cherts from the southern upland of scotland [J]. Journal of the Geological Society, 1999, 156: 191-204

[37]

YasuhiroK, KyokoN, YukioI. Geochemistry of late permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change [J]. Chemical Geology, 2002, 182: 15-34

[38]

van ZuilenM A, ChaussidonM, Rollion-BardC, MartyB. Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures [J]. Geochimica et Cosmochimica Acta, 2007, 71: 655-669

[39]

SugisakiR, KinoshitaT. Major element chemistry of the sediments on the central Pacific Transect [J]. Geol Surv Japan Cruise, 1982, 18: 293-312

[40]

MurryR W. Chemical criteria to identify the depositional environment of chert: General principles and applications [J]. Sedimentary Geology, 1994, 90(3/4): 213-232

[41]

ZhangF-xin. The recognition and exploration significance of exhalites related to Pb-Zn mineralizationsins devonian formations in Qinling Mountains [J]. Geology and Prospecting, 1989, 25(5): 11-18

[42]

TangZ-h, ZengY-fu. Petrology, geochemistry and origin of cherts in the uraniferous formations, middle silurian west Qinling range [J]. Acta Petrologica Sinica, 199062-71

[43]

WangD-a, ChenR-jun. Geochemically genetic criteria of silicolites in Yaluzangbu suture belt and their geological significance [J]. Acta Sedimentologic Sinica, 1995, 13(1): 27-31

[44]

HanF, HarisonW. Evidence for exhalative origin for rocks and ores of the dachang tin polymetallic field: The ore-bearing formation and hydrothermal exhalative sedimentary rocks [J]. Mineral Deposits, 1989, 8(2): 25-40

[45]

AdachiM, YamamotoK, SugisakiR. Hydrothermal chert and associated siliceous rocks from the northern Pacific and their geological significance as indication of ocean ridge activity [J]. Sedimentary Geology, 1986, 47(1/2): 125-148

[46]

DuhigN O. Cambrian microbian and silica geltextures in silica iron exhalites from the Mount Windsor volcanic belt Australian: Their petrography, chemistry, and origin [J]. Economic Geology, 1992, 87(3): 764-768

[47]

WenL, LiangW-x, ZhangZ-g, HuangJ-chuInfrared Spectroscopy of the mineral [M], 1989, Chongqing, Chongqing University Press: 1-190

[48]

NoonsR E, DevonshireR, ClappT V, OjhaS M, MccarthyO. Analysis of waveguide silica glasses using Raman microscopy [J]. Journal of Non-Crystalline Solids, 2008, 354: 3059-3071

[49]

YoshikawaM, IwagamiK, MoritaN, MatsunobeT, IshidaH. Characterization of fluorine-doped silicon dioxide film by Raman spectroscopy [J]. Thin Solid Film, 1997, 310: 167-170

[50]

OstroumovM, FaulquesE, LounejevaE. Raman spectroscopy of natural silica in Chicxulub impactite, Mexico[J]. Comptes Rendus Geoscience, 2002, 334(1): 21-26

[51]

JiS-f, XiaoT-c, LiS-b, ChouL-j, ZahngB, XuC-z, HouR-l, AndrewP E, Green MalcomnL H. Surface WO4 tetrahedron: the essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts [J]. Journal of Catalysis, 2003, 220(1): 47-56

[52]

ScottJ F, PortoS P S. Longitudinal and transverse optical lattice vibrations in quartz [J]. Phys Rev, 1967, 161: 903-910

[53]

YouJ-l, JiangG-c, HouH-yu. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicatesv [J]. Raman Spectrosc, 2004, 36(3): 237-249

[54]

KeY-k, DongH-ruAnalysis Chemistry-The third volume: Analysis spectrum [M], 1998, Beijing, Chemical Industry Press: 1-1324

[55]

YangZ-j, LiH-z, PengM-s, ChenJ, LinF, SuY-wei. Study on the HPHT synthetic diamond crystal from Fe-C(H) system and its significance [J]. Chinese Science Bulletin, 2007, 53(1): 137-144

[56]

LynneB Y, CampbellK A, MooreJ N, BrowneP R L. Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A [J]. Sedimentary Geology, 2005, 179(3/4): 249-278

[57]

ZhengM-p, WangQ-x, DuoJ, LiuJ, ZhangS-chunNew hydrothermal mineralization-cesium mineral deposits [M], 1995, Beijing, Geology Press

[58]

MurryRW, BuchholtzT, BrinkM R, GerlachD C, RussP G, JonesD L. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments [J]. Geochimica et Cosmochimica Acta, 1991, 55: 1875-1895

[59]

PotapovV V, SerdanA A. Silica precipitation from hydrothermal heat-carrier by electrocoagulation [J]. Chemical technology, 20022-9

[60]

PotapovV V. Precipitation of amorphous silica from a high-temperature hydrothermal solution [J]. Glass Physics and Chemistry, 2004, 30(1): 73-81

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/