A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened (ODS) steels was described. Parametric dislocation dynamics (PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids (Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress (CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility (linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.
Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%–1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.
Directly quenched Nd9.5Fe81Zr3B6.5 nanocomposite permanent magnets were prepared under different melt treatment conditions, i.e., the melt temperature was varied prior to ejection onto the quenching wheel. The effect of quenching temperature on the microstructure and magnetic properties of the alloys was studied by X-ray diffractometry, transmission electron microscopy and magnetization measurements. It is found that a finer and more uniform microstructure can be obtained directly from the melt quenched at lower temperature. With increasing initial quenching temperature, the optimal quenching speed decreases and the microstructure of the ribbons becomes coarser and more irregular. As a result, the magnetic properties of the alloys are deteriorated. It is believed that the break of the pre-existing Nd2Fe14B clusters and decrease in number of the developing nuclei of Nd2Fe14B phase with increase in quenching temperature may be the causes for the change of the microstructure and the magnetic properties of the ribbons.
A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide (EMD) and LiOH·H2O were used as starting materials. The physiochemical properties of the synthesized samples were investigated by thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray diffractometry (XRD), and scanning electronic microscopy (SEM). The results show that the hydrothermally synthesized precursor is an essential amorphous. The precursor can be easily transferred to spinel powders with a homogeneous structure and a regularly-shaped morphology by heat treatment. Li1.05Mn1.95O4 powder obtained by heat treating the precursor at 430 °C for 12 h and then calcining at 800 °C for 12 h shows an excellent cycling performance with an initial charge capacity of 118.2 mA·h·g−1 obtained at 0.5C rate and 93.8% of its original value retained after 100 cycles.
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
Most Zn hydrometallurgy factories adopt Cu2SO4 as a dechlorination reagent from zinc solution nowadays, thus much CuCl residue is produced. The existing process of treating this residue is washing with water or sodium carbonate solution, which would cause a lot of troubles to water treatment and waste discharge. A method of microwave roasting was adopted for dechlorination of CuCl residue. A 1.5 kW microwave roasting equipment with dust collection and tail gas adsorption systems was set up and applied during the experiment. By investigating the effect of temperature, heat preservation time, moisture content of raw material and grain size of samples on the dechlorination, the optimal experimental condition is obtained. When the samples with 2% moisture and <150 μm grain size are microwave roasted at 400 °C for 2 h, the Cl content turns from 14.27% to 1.35% and the dechlorination rate is as high as 90%, while that with conventional heating is only 60%–80%. The phase change of the roasting process investigated with X-ray diffraction verifies that CuCl in CuCl residue is removed by being transformed into CuO.
Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.
V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-shape plates were carried out using finite element analysis package ABAQUS. Various geometries of V-shape plates with and without interlayer of materials like Al-foams and honeycomb were employed to analyze their effects on the deformation of the plate and applied stresses and strains. The results obtained show that application of metallic foams leads to better response of the plate and consequently results in more energy dissipation, less dame to vehicle and enhances crew survivability.
Based on the statics theory, a novel and feasible twice-suspended-mass method (TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen (LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient (DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded (UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.
Selective harmonic elimination (SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective function with proper weighting is proposed and also its efficiency is compared with the objective function which is more similar to the proposed one. To enhance the ability of the SHE in eliminating high number of selected harmonics, at each level of the output voltage, one slot is created. The SHE problem is solved by imperialist competitive algorithm (ICA). The conventional SHE methods cannot eliminate the selected harmonics and satisfy the fundamental component in some ranges of modulation indexes. So, to surmount the SHE defect, a DC-DC converter is applied. Theoretical results are substantiated by simulations and experimental results for a 9-level multilevel inverter. The obtained results illustrate that the proposed method successfully minimizes a large number of identified harmonics which consequences very low total harmonic distortion of output voltage.
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.
The nature of a wireless communication channel is very unpredictable. To design a good communication link, it is required to know the statistical model of the channel accurately. The average symbol error probability (ASER) was analyzed for different modulation schemes. A unified analytical framework was presented to obtain closed-form solutions for calculating the ASER of M-ary differential phase-shift keying (M-DPSK), coherent M-ary phase-shift keying (M-PSK), and quadrature amplitude modulation (QAM) over single or multiple Nakagami-m fading channels. Moreover, the ASER was estimated and evaluated by using the maximal ratio-combining (MRC) diversity technique. Simulation results show that an error rate of the fading channel typically depends on Nakagami parameters (m), space diversity (N), and symbol rate (M). A comparison between M-PSK, M-DPSK, and M-QAM modulation schemes was shown, and the results prove that M-ary QAM (M-QAM) demonstrates better performance compared to M-DPSK and M-PSK under all fading and non-fading conditions.
An minimum description length (MDL) criterion is proposed to choose a good partition for a bipartite network. A heuristic algorithm based on combination theory is presented to approach the optimal partition. As the heuristic algorithm automatically searches for the number of partitions, no user intervention is required. Finally, experiments are conducted on various datasets, and the results show that our method generates higher quality results than the state-of-art methods, cross-association and bipartite, recursively induced modules. Experiment results also show the good scalability of the proposed algorithm. The method is applied to traditional Chinese medicine (TCM) formula and Chinese herbal network whose community structure is not well known, and found that it detects significant and it is informative community division.
In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines (a Naïve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset.
An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and foreground object pixels was performed by using color invariant features. In the shadow model learning stage, instead of a single Gaussian distribution, it was assumed that the density function computed on the values of chromaticity difference or bright difference, can be modeled as a mixture of Gaussian consisting of two density functions. Meanwhile, the Gaussian parameter estimation was performed by using EM algorithm. The estimates were used to obtain shadow mask according to two constraints. Finally, experiments were carried out. The visual experiment results confirm the effectiveness of proposed method. Quantitative results in terms of the shadow detection rate and the shadow discrimination rate (the maximum values are 85.79% and 97.56%, respectively) show that the proposed approach achieves a satisfying result with post-processing step.
The general regression neural network (GRNN) model was proposed to model and predict the length of day (LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum (AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m−1. When the absorption coefficient is less or equal to 103 m−1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.
The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine (S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.
The magnetohydrodynamic (MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.
A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20–50 °C) and relative humidities (5%–99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.
In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate (EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn’t follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.
Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.
The purification efficiency in the treatment of the mine drainage generated by the mineral processing industry in Mengzi, Yunnan Project, China, was investigated, and the influences of the treated drainage on the mineral electrodes’ electrochemical behaviors were tested. Experiments with different doses of polyacrylamide (PAM) and polymeric ferric sulfate (PFS) at different pH values were carried out, and the advanced purification by activated carbon (AC) was conducted. Compared with PFS, the better coagulant for removal efficiency is PAM, under the optimal conditions, the removals of Pb2+, Zn2+, Cu2+ and COD reduction from solution were 94.8%, 79.9%, 87.6% and 85%, respectively. In the advanced purification, the particle size of activated carbon and agitation time played important roles in the removal efficiency. Each pollute concentration could meet the emission standard of pollutants for lead and zinc industry (GB25466—2010). The wastewater without treatment affected galena and sphalerite electrochemical behaviors greatly, after treatment by the technology, the effects disappeared, which proved the reliability of the technology for wastewater treatment.
Froth flotation is a widely used process of particle separation exploiting differences in surface properties. It is important to point out that overall flotation performance (grade and recovery) is a consequence of the quality and quantity of the solid particles collected from the pulp phase, transported into the froth phase, and surviving as bubble-particle aggregates into the overflow. This work will focus on studying these phenomena and will incorporate the effects of particle hydrophobicities in the 3-phase system. Solids are classed as either hydrophilic non-sulphide gangue (e.g. silica, talc), hydrophilic sulphide (e.g. pyrite), or hydrophobic sulphide (e.g. sphalerite). Talc is a surface-active species of gangue that has been shown to behave differently from silica (frother adsorbs on the surface of talc particles). Both are common components of ores and will be studied in detail. The focus of this work is to investigate the role of solids on pulp hydrodynamics, froth bubble coalescence intensity, water overflow rate with solids present, and in particular, the interactions between solids, frother and gas on the gas dispersion parameters. The results show that in the pulp zone there is no effect of solids on bubble size and gas holdup; in the froth zone, although hydrophilic particles solely do not effect on the water overflow rate, hydrophobic particles produce higher intensity of rates on water overflow and bubble coalescence, and many be attributed to the water reattachment.
Selective flocculation is a new method to solve the problem of China’s bauxite de-silication besides flotation and reverse flotation. The method of selective flocculation of bauxite using hydrolyzed polyacrylamide as flocculant was experimented and evaluated. The results of diaspore and kaolinite single mineral settling tests show that the difference between settlement yield of kaolinite (settling 15 min) and diaspore (settling 3 min) increases from 16% to 60% by adding flocculant at pH=7. Results of selective flocculation experiment of bauxite show that the higher concentrate grade (65.75) and Al-Si ratio (7.34) could be obtained with sodium carbonate as dispersant compared with sodium hexametaphosphate; under the action of flocculating agent, the concentrate grade and Al-Si ratio increase to 67.99 and 9.01. These results could meet the requirements of Bayer production, and the simpler process was expected to cost far less than traditional flotation method and a promising de-silication method of bauxite.
The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%–93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism (radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.
Major elements, trace elements and sulfur, oxygen isotopic compositions of the main intrusions were studied in Yueshan area. The fact that intrusions enriched in Th and Sr, and depleted in Rb and Ba in this area, suggests that the original magma roots in alkali basalt magma of upper mantle, with deep characteristics. It can be seen that the diagenesis environments are the island arc and active continental margin areas from the lg τ to lg σ diagram of intrusions. With the increase of SiO2, Fe2O3, MnO and P2O5 decrease, which shows that the magma of Yueshan area endured crystal fractionation of ferromanganese mineral and apatite in early evolution stage. With the further rise and evolution of magma, magma composition of calcium increased, meanwhile enriched in Zr, and depleted in Nb and Ta. This indicates that crustal component is gradually added, the assimilation and contamination occur between magma and crustal material, which includes the magma evolving, from calc-alkaline series to alkaline series. The results show that crystal fractionation, assimilation and contamination are the main evolution law of magma in this area.
Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the areas vulnerable to disasters is demanded to prevent or mitigate the damages to infrastructure. The areas vulnerable to disasters in Busan, located at southeastern part of Korea, were estimated based on historical records of damages and a risk assessment of the infrastructure was performed to provide fundamental information prior to the establishment of the real-time monitoring system for infrastructure and establish disaster management system. The results are illustrated by using geographical information system (GIS) and provide the importance of the roadmap for comprehensive and specific strategy to manage natural disasters.
The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×10−3 and magnitude of 91 cm were firstly derived by theoretical derivation. Then, the stronger phase maintaining capacity and weaker sensitivity to minor land subsidence compared with C-band DInSAR were illustrated by phase simulation of the actual mine subsidence. Finally, the data processing procedure of two-pass DInSAR was further refined to accurately observe subsidence of a coalfield of Jining in Northern China using 7 ALOS PALSAR images. The largest monitored subsidence magnitude of 39.22 cm and other properties were better investigated by testing results interpretation and subsidence analysis, and the absolute difference varying from 0.5 mm to 17.9 mm was obtained by comparison with leveling-measured subsidence. All of results show that L-band DInSAR technique can investigate the location, amount, area and other detailed subsidence information with relatively higher accuracy.
In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30–40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.
For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulomb failure criterion were adopted to derive a stability model for the infinite terraced slope subjected to an intense rainfall. Numerical simulation was performed for verifying its applicability. The results of numerical simulation indicate that a set of stepped wetting fronts are found during infiltration, and the infiltration of terraced slope covered by coarse-textured soils can be approximated as one-dimensional infiltration. The potential sliding surfaces from the numerical method are all parallel to the slope line, and the proposed model and framework can provide an approximate method of estimating how the infiltration affects the stability of an infinite terraced slope.
The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.
A new measurement technique is used to determine the settlement of bridge pile foundation and the thickness of deep compressed soft layer. The finite element Plaxis 3D foundation program is used in the analysis with a proposed empirical equation to modify the input parameters represented by the soil compression modulus. The results of the numerical analysis using the proposed empirical equation provide insight to the settlement analysis of pile groups in soft clayey soils; consequently, the finite element Plaxis 3D program can be a useful tool for numerical analysis. The numerical analysis is modified by adjusting the calculation of compression modulus from those obtained under pressure between 100–200 kPa by which the results of the settlement are modified and thus matching the realistic measurements. The absolute error is 3 mm which is accepted compared with the last researches. This scenario can be applied for the similar problems in the theoretical applications of deep foundations.
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.
Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic (brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis (such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis (such as σ2=20 MPa, σ3=0 MPa).
A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory (UST) were used to simulate both the consolidated-undrained (CU) triaxial and the consolidated-drained (CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account.
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.
An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features: (1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and (2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.
The cracking behavior of lightweight aggregate concrete (LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete (NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack.
A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent (STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers’ robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.
The techniques to forecast available parking space (APS) are indispensable components for parking guidance systems (PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents (largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network (WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1 (in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method.
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.
A new CVT (continuously variable transmission) design which is a traction drive variator has been introduced. Analytical predictions and experimental results of the steady state which demonstrate higher efficiencies and power capacities of the new design are presented. The traction and power loss are then predicted by using models including evaluation of creep and spin in the contact patch. Analytical predictions of the transmission reach reasonable agreement with the experimental data, and the transmission efficiency of the system increases as the input torque increases while the input speed is certain. The research results can be further used in hydraulic traction drive CVT design and optimization.
The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both homogeneous and layered soil subjected to a harmonic vertical load was built. With the help of this model, displacement Green’s function was calculated and the propagation laws of ground vibration responses were discussed. Results show that: 1) When applying a harmonic load on the half-space surface, the amplitude of ground vibrations attenuate with fluctuation, which is caused by the superposition of bulk and Rayleigh waves. 2) Vibration amplification can be enlarged under the conditions of embedded source and the soil layers. 3) In practice, the fluctuant attenuation should be paid attention to especially for the vibration receivers who are sensitive to single low frequencies (<10 Hz). Moreover, for the case of embedded loads, it should also be paid attention to that the receivers are located at the place where the horizontal distance is similar to embedded depth, usually 10 to 30 m for metro lines.