Nonlinear characteristics and functional analysis of masseter electromyography

Xin Hu , Xiao-bo Wu , Bo Zou , Yu-li Fu , Yi Yu , Guang-wen Lu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 834 -839.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 834 -839. DOI: 10.1007/s11771-011-0770-y
Article

Nonlinear characteristics and functional analysis of masseter electromyography

Author information +
History +
PDF

Abstract

The C-C method was adopted to analyze the nonlinear characteristics of masseter electromyography (EMG) signals and the chaotic degree by the largest Lyapunov exponent (LLE) of different genders and sides. First, the embedding dimension and the delay time were obtained through this method, then the phase space was reconstructed to resume the chaotic attractor and determine the LLE. The result shows that the trajectory of attractor is denser than Chen’s attractor, and the LLE is positive, which means that not only the signal has the character of chaos, but also the chaotic degree of masseter EMG is relatively high. According to the value of the LLE, the chaotic degree of men’s masseter EMG is higher than that of women’s; when the dentition is normal, the chaotic degree of two sides is almost the same. Then, a conclusion can be deduced that if the LLE of both sides are in great difference, the unilateral mastication is likely to exist, which means that the nonlinear characteristics of masseter EMG can be applied to predict the unilateral mastication.

Keywords

nonlinear characteristic / masseter electromyograph / C-C Method / phase space reconstruction / attractor / Lyapunov exponent

Cite this article

Download citation ▾
Xin Hu, Xiao-bo Wu, Bo Zou, Yu-li Fu, Yi Yu, Guang-wen Lu. Nonlinear characteristics and functional analysis of masseter electromyography. Journal of Central South University, 2011, 18(3): 834-839 DOI:10.1007/s11771-011-0770-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NieminenH., TakalaE. P.. Evidence of deterministic chaos in the myoelectric signal [J]. Electromyogarphy Clinical Neurophysiology, 1996, 36: 49-58

[2]

SwieY. W., SakamotoK., ShimizuY.. Chaotic analysis of electromyography signal at low back and lower limb muscles during forward bending posture [J]. Electromyogarphy Clinical Neurophysiology, 2005, 45: 329-342

[3]

XieH.-b., ZhengY.-p., GuoJ.-yi.. Detection of chaos in human fatigue mechanomyogarphy signals [C]. The 31st Annual International Conference of the IEEE EMBS, 2009, Minneapolis, IEEE: 4379-4382

[4]

YanoM., HommaN., SakaiM., AbeK.. Phase-space reconstruction from observed time series using Lyapunov spectrum analysis [C]. Proceedings of the 41st SICE Annual Conference, 2002, Osaka, SICE: 701-706

[5]

KimH. S., EykholtR., SalasJ. D.. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127: 48-60

[6]

CaiW.-d., QinY.-q., YangB.-ru.. Selection of delay time window and delay time in phase space reconstruction [C]. International Conference on Computational Intelligence and Security, 2007, Beijing, IEEE: 526-530

[7]

ShaoC.-x., FanJ.-f., LiS.-bin.. Nonlinear characteristics and qualitative analysis of sleep EEG [C]. The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007, Hefei, IEEE: 794-797

[8]

GrassbergerP., ProcacciaI.. Characterization of strange attractors [J]. Physical Review Letters, 1983, 50(5): 346-349

[9]

GrassbergerP., ProcacciaI.. Measure the strangeness of strange attractors [J]. Physica D, 1983, 9: 189-208

[10]

J.-h., LuJ.-a., ChenS.-hua.Analysis and application of chaotic time series [M], 2002, Wuhan, Wuhan University Press: 85-92

[11]

RosensteinM. T., CollinsJ. J., DelucaC. J.. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physica D, 1993, 65: 117-134

[12]

LI Qing-du, CHEN Shu. An improved algorithm for Lyapunov exponents of fractional-order system [C]// Proceedings of the 29th Chinese Control Conference. Beijing: 2010: 300–303. (in Chinese)

[13]

WolfA., SwiftJ. B., SwinneyH. L.. Determining Lyapunov exponents from a time series [J]. Physica D, 1985, 16: 285-317

[14]

SongW., HouJ.-j., LiZ.-h., HuangLiang.. Chaotic system and QR factorization based robust digital image watermarking algorithm [J]. Journal of Central South University, 2011, 18(2): 116-124

[15]

ZhuC.-x., ChenZ.-gang.. A novel spatial domain digital watermarking algorithm based on chaotic map [J]. Journal of Central South University: Science and Technology, 2005, 36(2): 272-276

[16]

QiuH., JinG.-q., JinR.-f., ZhaoW.-kang.. Analysis of variance of repeated data measured by water maze with SPSS [J]. Journal of Chinese Integrative Medicine, 2007, 5(1): 20-31

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/