Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique
Zheng-wei Zhu , Jian-jiang Zhou
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 809 -815.
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique
A super-resolution reconstruction approach of radar image using an adaptive-threshold singular value decomposition (SVD) technique was presented, and its performance was analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that s2≥max(s2)/rinSNR were tested. The experimental results indicate that when the singular value threshold is set as smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
synthetic-aperture radar / image reconstruction / super-resolution / singular value decomposition / adaptive-threshold
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
/
| 〈 |
|
〉 |