ARROW-WTCP: A fast transport protocol based on explicit congestion notification over wired/wireless networks

Jian-xin Wang , Jing Li , Liang Rong

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 800 -808.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 800 -808. DOI: 10.1007/s11771-011-0765-8
Article

ARROW-WTCP: A fast transport protocol based on explicit congestion notification over wired/wireless networks

Author information +
History +
PDF

Abstract

An explicit congestion notification (ECN)-based distributed transport protocol, ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network), was proposed. The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms. The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link. The simulation results show that the ARROW-WTCP achieves strong stability, max-min fairness in dynamic networks, fast convergence to efficiency without introducing much excess traffic, and almost full link utilization in the steady state. It outperforms the XCP-B (eXplicit Control Protocol Blind), the wireless version of XCP, in terms of stability, fairness, convergence and utilization in wireless networks.

Keywords

ARROW-WTCP / transport protocol / stability / convergence / fairness / IEEE 802.11

Cite this article

Download citation ▾
Jian-xin Wang, Jing Li, Liang Rong. ARROW-WTCP: A fast transport protocol based on explicit congestion notification over wired/wireless networks. Journal of Central South University, 2011, 18(3): 800-808 DOI:10.1007/s11771-011-0765-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CaserriC., MeoM.. A new approach to model the stationary behavior of TCP connections [C]. IEEE INFOCOM 2000, 2000, Tel Aviv, Israel, CA, IEEE Computer Society: 367-375

[2]

BianchiG.. Performance analysis of the IEEE 802.11 distributed coordination function [J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535-547

[3]

BalakrishnanH., SeshanS., AmirE., KatzR. H.. Improving TCP/IP performance over wireless networks [C]. MOBICOM’95, 1995, Berkeley, CA, USA, ACM Press: 2-11

[4]

SuY., GrossT.. WXCP: explicit congestion control for wireless multi-hop networks [C]. Proceedings of IEEE IWQoS, 2005, Passau, Springer: 313-326

[5]

AbrantesF., RicardoM.. XCP for shared-access multi-rate media [J]. ACM SIGCOMM Computer Communication Review, 2006, 36(3): 27-38

[6]

XuK., TianY., AnsariN.. TCP-Jersey for wireless IP communications [J]. IEEE Journal on Selected Areas in Communications, 2004, 22(4): 747-756

[7]

BrakmoL. S., PertersonL. L.. TCP Vegas: End-to-end congestion avoidance on a global internet [J]. IEEE Journal on Selected Areas in Communication, 1995, 13(8): 1465-1480

[8]

KeshavS.. A control-theoretic approach to flow control [C]. Proceedings of ACM SIGCOMM, 1991, Zurich, Switzerland, ACM Press: 3-15

[9]

FuC. P., LiewS. C.. TCP Veno: TCP enhancement for transmission over wireless access networks [J]. IEEE Journal on Selected Areas in Communication, 2003, 21(2): 216-228

[10]

CasettiC., GerlaM., MascoloS., SanadidiM. Y., WangRen.. TCP Westwood: Bandwidth estimation for enhanced transport over wireless links [C]. Proceedings of MOBICOM 2001, 2001, Rome, Italy, Springer: 287-297

[11]

GerlaM., NgB. K. F., SanadidiM. Y., VallaM., WangRen.. TCP Westwood with adaptive bandwidth estimation to improve efficiency/friendliness tradeoffs [J]. ACM Computer Communication, 2004, 27(1): 41-58

[12]

WangR., VallaM., SanadidiM. Y., GerlaM.. Using adaptive rate estimation to provide enhanced and robust transport over heterogeneous networks [C]. Proceedings 10th IEEE ICNP, 2002, Paris, France, IEEE Computer Society: 206-215

[13]

CaponeA., FrattaL., MartignonF.. Bandwidth estimation schemes for TCP over wireless networks [J]. IEEE Transactions on Mobile Computing, 2004, 3(2): 129-143

[14]

GaoW.-y., ChenS.-q., WangJ.-xin.. End-to-end delay bound of packets [J]. Journal of Central South University: Science and Technology, 2006, 37(1): 135-140

[15]

KatabiD., HandleyM., RohrsC.. Congestion control for high bandwidth-delay product networks [C]. Proceedings of ACM SIGCOMM, 2002, New York, ACM Press: 89-102

[16]

ZhangY.-g., AhmedM.. A control theoretic analysis of XCP [C]. Proceedings of IEEE INFOCOM, 2005, Miami, IEEE Press: 2831-2835

[17]

ZhangY.-g., HendersonT. R.. An implementation and experimental study of the explicit control protocol (XCP) [C]. Proceedings IEEE INFOCOM, 2005, Miami, IEEE Press: 1037-1048

[18]

LowS., AndrewL., WydrowskiB.. Understanding XCP: equilibrium and fairness [C]. Proceedings IEEE INFOCOM, 2005, Miami, IEEE Press: 1025-1036

[19]

WangJ.-x., MakfileS., LiJing.. A random adaptive method to adjust MAC parameters in IEEE802.11e WLAN [J]. Journal of Central South University of Technology: Science and Technology, 2009, 16(4): 629-634

[20]

WangJ.-x., RongL., ZhangX., ChenJ.-er.. ARROW-TCP: Accelerating transmission toward efficiency and fairness for high-speed networks [C]. Proceedings of IEEE GLOBECOM, 2009, Hawaii, IEEE Press: 1-6

[21]

ZhangY.-p., LeonardD., LoguinovD.. JetMax: scalable max-min congestion control for high-speed heterogeneous networks [C]. Proceedings of IEEE INFOCOM, 2006, Barcelona, IEEE Computer Networks: 1-13

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/