Adaptive control using interval Type-2 fuzzy logic for uncertain nonlinear systems

Hai-bo Zhou , Hao Ying , Ji-an Duan

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 760 -766.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (3) : 760 -766. DOI: 10.1007/s11771-011-0760-0
Article

Adaptive control using interval Type-2 fuzzy logic for uncertain nonlinear systems

Author information +
History +
PDF

Abstract

A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noise or step disturbance indicate that the T2 controller is better than the T1 controller by 0–18%, depending on the experiment condition and performance measure.

Keywords

Type-2 fuzzy systems / adaptive fuzzy control / nonlinear systems / stability

Cite this article

Download citation ▾
Hai-bo Zhou, Hao Ying, Ji-an Duan. Adaptive control using interval Type-2 fuzzy logic for uncertain nonlinear systems. Journal of Central South University, 2011, 18(3): 760-766 DOI:10.1007/s11771-011-0760-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YingH.. Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control [J]. IEEE Trans Fuzzy Syst, 1998, 6(2): 226-234

[2]

YING H. General interval Type-2 mamdani fuzzy systems are universal approximators [C]// Proceedings of North American Fuzzy Information Processing Society. New York, USA, 2008: 294–299.

[3]

MendelJ. M.Uncertain rule-based fuzzy logic systems: Introduction and new directions [M], 2001, New Jersey, Prentice-Hall Press: 10-50

[4]

HaniH.. Type-2 FLCs: A new generation of fuzzy controllers [J]. IEEE Trans Computational Intelligence Magazine, 2007, 2(1): 30-43

[5]

JohnR., CouplandS.. Type-2 fuzzy logic: A historical view [J]. IEEE Trans Computational Intelligence Magazine, 2007, 2(1): 57-62

[6]

RheeF. C.. Uncertain fuzzy clustering: Insights and recommendations [J]. IEEE Trans Computational Intelligence Magazine, 2007, 2(1): 44-56

[7]

KheireddineC., LamirS., MounaG., KhierB.. Indirect adaptive interval Type-2 fuzzy control for nonlinear systems [J]. Int J Modelling, Identification and Control, 2007, 2(2): 106-119

[8]

ZHOU Hai-bo, YING H, DUAN Ji-an. T2 Adaptive fuzzy logic controller [C]// IEEE Conference on Fuzzy Systems. Seoul, Korea, 2009: 836–841.

[9]

WangL.-xin.. Fuzzy systems are universal approximators [J]. IEEE Trans Fuzzy Syst, 1992, 8(12): 1163-1170

[10]

LiH.-x., TongS.-cheng.. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems [J]. IEEE Trans Fuzzy Syst, 2003, 11(1): 24-34

[11]

LiangQ.-l., MendelJ. M.. Interval Type-2 fuzzy logic systems: Theory and design [J]. IEEE Trans Fuzzy Syst, 2000, 8(5): 535-550

[12]

MendelJ. M., JohnR. I., LiuF.. Interval Type-2 fuzzy sets made simple [J]. IEEE Trans Fuzzy Syst, 2006, 14(6): 808-821

[13]

KarnikN. N., MendelJ. M., LiangQ.. Type-2 fuzzy logic systems [J]. IEEE Trans Fuzzy Syst, 1999, 7(6): 643-658

[14]

WuH.-w., MendelJ. M.. Uncertainty bounds and their use in the design of interval Type-2 fuzzy logic systems [J]. IEEE Trans Fuzzy Syst, 2002, 10(5): 622-639

[15]

WangL.-xin.. Stable adaptive fuzzy controllers with application to inverted pendulum tracking [J]. IEEE Trans Systems, Man, and Cybernetics-Part B: Cybernetics, 1996, 26(5): 677-691

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/