Calculation of optimal current density of double side permanent magnet linear synchronous motor

Ki-Bong Jang , Ho-Jin An , Gyu-Tak Kim

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 165 -170.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 165 -170. DOI: 10.1007/s11771-011-0675-9
Article

Calculation of optimal current density of double side permanent magnet linear synchronous motor

Author information +
History +
PDF

Abstract

The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor (PMLSM) was presented. The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design. Changing optimal current density is verified whenever the design parameters of the motor are altered. The design parameters of the motor were applied to thrust calculation. In this way, the optimal model, which is a reversal of the existing design method, is deduced. The results were compared with the experimental data to verify their validity. When the convection heat transfer coefficient is applied to other models, the results of the analysis and test values show good concordance. The method proposed has some limitations.

Keywords

permanent magnet linear synchronous motor / current density / heat transfer / temperature / thickness of coil

Cite this article

Download citation ▾
Ki-Bong Jang, Ho-Jin An, Gyu-Tak Kim. Calculation of optimal current density of double side permanent magnet linear synchronous motor. Journal of Central South University, 2011, 18(1): 165-170 DOI:10.1007/s11771-011-0675-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SanadaM., MorimotoS., TakedaY.. Interior permanent magnet linear synchronous motor for high performance drives [J]. IEEE Trans Industry Application, 1997, 33(4): 966-972

[2]

RADWAN T S, RAHMAN M A, OSHEIBA A M, LASHINE A E. Dynamic analysis of a high performance permanent magnet synchronous motor drive [C]// Canadian Conference on Electrical and Computer Engineering. Alberta, 1996: 611–614.

[3]

PanS., KohC.-Seop.. Shape optimal design of a 9-pole 10-slot PMLSM for detent force reduction using adaptive response surface method [J]. IEEE Trans Magnetics, 2009, 45(10): 4562-4565

[4]

KARITA M. Present status of linear drives for industry applications in japan [C]// Proc of LDIA01. Nagano, 2001: 462–467.

[5]

ZhuY.-w., LeeS.-G., ChungK.-S., ChoY.-Hyun.. Investigation of auxiliary poles design criteria on reduction of end effect of detent force for PMLSM [J]. IEEE Trans Magnetics, 2009, 45(6): 2863-2866

[6]

ChungS.-U., LeeH.-J., HwangS.-Moon.. A novel design of linear synchronous motor using FRM topology [J]. IEEE Trans Magnetics, 2008, 44(6): 1514-1517

[7]

YoshidaK., LeeJ., KimY. J.. 3-D FEM field analysis in controlled PMLSM for maglev vehicle [J]. IEEE Trans Magnetics, 1997, 33(2): 2207-2210

[8]

BogliettiA., CavagninoA., StatonD., ShanelM., MuellerM., MejutoC.. Evolution and modern approaches for heat analysis of electrical machines [J]. IEEE Trans Magnetics, 2009, 56(3): 871-882

[9]

FabrizioM., VincenzoD. C.. Heat analysis of an axial flux permanent-magnet synchronous machine [J]. IEEE Trans Magnetics, 2009, 45(7): 2970-2975

[10]

MellorP., RobertsD., TurnerD.. Lumped parameter heat model for electrical machines of TEFC design [J]. IEEE Proceedings, 1991, 138(5): 205-218

[11]

IncroperaF. P., DavidP.Introduction to heat transfer [M], 1996Third editionDewitt, School of Mechanical Engineering Purdue University: 832

[12]

Korean Agency for Technology and Standards. KS C IEC 60034-1 [S]. 2008.

[13]

AID S R, MAHADI W N L, NOR K M. Heat analysis of a tubular permanent magnet linear generator using multiphysics solver [C]// Proc IEEE Region 10 TENCON 2005 Conf. Melbourne, CD-ROM.

[14]

GarimellaS. V., SinghalV., DongLiu.. On-chip thermal management with microchannel heat sinks and integrated micropumps [J]. IEEE Trans Magnetics, 2006, 94(8): 1534-1548

[15]

BELL J H, HAND L A. Calculation of mass transfer coefficients in a crystal growth chamber through heat transfer measurements [C]// ICIASF Trans Magnetics. Pacific Grove, 2007: 1–21.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/