Linearization of T-S fuzzy systems and robust H control

Tae-Sung Yoon , Fa-guang Wang , Seung-Kyu Park , Gun-Pyong Kwak , Ho-Kyun Ahn

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 140 -145.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 140 -145. DOI: 10.1007/s11771-011-0671-0
Article

Linearization of T-S fuzzy systems and robust H control

Author information +
History +
PDF

Abstract

Takagi-Sugeno (T-S) fuzzy model is difficult to be linearized because of membership functions included. So, novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system. The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models. The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily. After the linearization of T-S fuzzy model, a robust H controller with the robustness of sliding model control (SMC) is designed. As a result, controlled T-S fuzzy system shows the performance of H control and the robustness of SMC.

Keywords

T-S fuzzy control / linearization / H control / sliding mode control

Cite this article

Download citation ▾
Tae-Sung Yoon, Fa-guang Wang, Seung-Kyu Park, Gun-Pyong Kwak, Ho-Kyun Ahn. Linearization of T-S fuzzy systems and robust H control. Journal of Central South University, 2011, 18(1): 140-145 DOI:10.1007/s11771-011-0671-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HoW. H., TsaiJ. T., ChouJ. H.. Robust-stable and quadratic-optimal control for TS-fuzzy-model-based control systems with elemental parametric uncertainties [J]. IET Control Theory & Applications, 2007, 1(3): 731-742

[2]

HoW. H., TsaiJ. T., ChouJ. H.. Robust quadratic-optimal control of TS-fuzzy-model-based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error [J]. IEEE Trans Fuzzy Systems, 2009, 17(3): 518-531

[3]

HsuM. R., HoW. H., ChouJ. H.. Stable and quadratic optimal control for TS fuzzy-model-based time-delay control systems [J]. IEEE Trans Man and Cybernetics Systems, Part A: Systems and Humans, 2008, 38(4): 933-944

[4]

KruszewskiA., WangR., GuerraT. M.. Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach [J]. IEEE Trans Automatic Control, 2008, 53(2): 606-611

[5]

TakagiT., SugenoM.. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Trans Man and Cybernetics Systems, Part A: Systems and Humans, 1985, 15: 116-132

[6]

TnankaK., IkedaT., WangH. O.. Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs [J]. IEEE Trans Fuzzy Systems, 1998, 6: 250-265

[7]

ChenB.-s., TsengC.-s., UangH.-jian.. Robustness design of nonlinear dynamic systems via fuzzy linear control [J]. IEEE Trans Fuzzy Systems, 1999, 7(5): 571-585

[8]

TnankaK., WangH. O.Fuzzy control systems design and analysis: A linear matrix inequality approach [M], 2001, New York, John Wiley & Sons Inc: 49-81

[9]

FengGang.. A survey on analysis and design of model-based fuzzy control systems [J]. IEEE Trans Fuzzy Systems, 2006, 14(5): 676-697

[10]

MohanmmandN., LamH. K.. Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using Regional-Membership-Function-Shape-Dependent analysis approach [J]. IEEE Trans Fuzzy Systems, 2009, 17(5): 1221-1228

[11]

ZhaoY., GaoH.-j., LamJ., DuB.-zhu.. Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach [J]. IEEE Trans Fuzzy Systems, 2009, 17(4): 750-762

[12]

SouzaF. O., MozelliL. A., PalharesR. M.. On stability and stabilization of T-S fuzzy time-delayed systems [J]. IEEE Trans Fuzzy Systems, 2009, 17(6): 1450-1455

[13]

LeeH. G., KimY. M., JeonH. T.. On the linearization via a restricted class of dynamic feedback [J]. IEEE Trans AC, 2000, 45: 1385-1391

[14]

KhalilH. K.Nonlinear systems [M], 2002, New Jersey, Prentice Hall: 505-544

[15]

LeeH. G., ArapostathisA., MarcusS. I.. Linearization of discrete-time systems via restricted dynamic feedback [J]. IEEE Trans AC, 2003, 48: 1646-1650

[16]

YoungK. D., UtkinV. I., OzgunerU.. A control engineer’s guide to sliding mode control [J]. IEEE Trans on Control Systems Technology, 1999, 7(3): 328-342

[17]

PARK S K, AHN H K. Nonconservative sliding mode control with the feedback linearization or nonlinear system [C]// Proceedings of the 39th IEEE Conference on Decision and Control. Sydney: 2000: 2210–2216. (in Sydney)

[18]

ParkS. K., AhnH. G.. Robust optimal controller design with novel sliding surface [J]. IEEE Proc Control Theory Appl, 1999, 146(3): 242-246

[19]

LiutanakulP., PierfedericiS., TabarF. M.. Application of SMC with I/O feedback linearization to the control of the cascade Controlled-Rectifier/Inverter-Motor drive system with small dc-link capacitor [J]. IEEE Trans Power Electro, 2008, 23: 2489-2499

[20]

KuschewskiJ. G., HuiS., ZakS. H.. Application of feed forward neural networks to dynamical system identification and control [J]. IEEE Trans Control Systems Technology, 1993, 1(1): 37-49

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/