Electrochemical performance of interfacially polymerized polyaniline nanofibres as electrode materials for non-aqueous redox supercapacitors

Jie Li , Jing Fang , Mu Cui , Hai Lu , Zhi-an Zhang , Yan-qing Lai

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 78 -82.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 78 -82. DOI: 10.1007/s11771-011-0662-1
Article

Electrochemical performance of interfacially polymerized polyaniline nanofibres as electrode materials for non-aqueous redox supercapacitors

Author information +
History +
PDF

Abstract

H+ doped polyaniline nanofibre (PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt (PLI and PHLI) were prepared by immersing emeraldine base (EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC), respectively. PH, PLI and PHLI were all characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectrometry. With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte, PH, PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors. PLI shows the highest initial specific capacitance of 120 F/g (47 F/g for PH and 66 F/g for PHLI) among three samples. After 500 cycles, the specific capacitance of PLI remains 75 F/g, indicating the good cycleability.

Keywords

polyaniline nanofibre / redox supercapacitor / interfacial polymerization / lithium salt doping

Cite this article

Download citation ▾
Jie Li, Jing Fang, Mu Cui, Hai Lu, Zhi-an Zhang, Yan-qing Lai. Electrochemical performance of interfacially polymerized polyaniline nanofibres as electrode materials for non-aqueous redox supercapacitors. Journal of Central South University, 2011, 18(1): 78-82 DOI:10.1007/s11771-011-0662-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ConwayB. E., PellW. G., LiuT. C.. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries [J]. Journal of Power Sources, 1997, 65(1/2): 53-59

[2]

LaiY.-q., LiJ., SongH.-s., ZhangZ.-a., LiJ., LiuY.-xiang.. Preparation of activated carbons from mesophase pitch and their electrochemical properties [J]. Journal of Central South University of Technology, 2007, 14(5): 601-606

[3]

FrackowiakE., BeguinF.. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon, 2001, 39(6): 937-950

[4]

RyuK. S., KimK. M., HongY. S., ParkY. J., ChangS. H.. The polyaniline electrode doped with li salt and protonic acid in lithium secondary battery [J]. Bulletin of the Korean Chemical Society, 2002, 23(8): 1144-1148

[5]

DearmittC., ArmesS. P.. Colloidal dispersions of surfactant-stabilized polypyrrole particles [J]. Langmuir, 1993, 9(3): 652-654

[6]

YangS. M., ChenK. H., YangY. F.. Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane [J]. Synthetic Metals, 2005, 152(1/2/3): 65-68

[7]

SongG.-p., HanJ., GuoRong.. Synthesis of polyaniline/NiO nanobelts by a self-assembly process [J]. Synthetic Metals, 2007, 157(4/5): 170-175

[8]

SaravananC., PalaniappanS., ChandezonF.. Synthesis of nanoporous conducting polyaniline using ternary surfactant [J]. Material Letters, 2008, 62(6/7): 882-885

[9]

NekrasovA. A., GribkovaO. L., EreminaT. V., IsakovaA. A., IvanovV. F., TverskojV. A., VannikovA. V.. Electrochemical synthesis of polyaniline in the presence of poly(amidosulfonic acid)s with different rigidity of polymer backbone and characterization of the films obtained [J]. Electrochimica Acta, 2008, 53(11): 3789-3797

[10]

HuangJ. X., KanerR. B.. A general chemical route to polyaniline nanofibers [J]. Journal of the American Chemical Society, 2004, 126(3): 851-855

[11]

ZhangX. Y., RochC. Y., JoseA., ManoharS. K.. Nanofibers of polyaniline synthesized by interfacial polymerization [J]. Synthetic Metals, 2004, 145(1): 23-29

[12]

VinayG., NorioM.. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline [J]. Materials Letters, 2006, 60(12): 1466-1469

[13]

ZhaoG.-y., LiH.-Lin.. Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors [J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 590-594

[14]

RyuK. S., KimK. M.. A hybrid power source with a shared electrode of polyaniline doped with LiPF6 [J]. Journal of Power Sources, 2007, 165(1): 420-426

[15]

RyuK. S., LeebY., HancK. S., ParkY. J., KangM. G., ParkN. G., ChangS. H.. Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes [J]. Solid State Ionics, 2004, 175(1/4): 765-768

[16]

RyuK. S., KimK. M., ParkY. J., ParkN. G., KangM. G., ChangS. H.. Redox supercapacitor using polyaniline doped with Li salt as electrode [J]. Solid State Ionics, 2002, 152/153: 861-866

[17]

DrelikiewiczA., HasikM., ChoczynskiM.. The new oxygen-deficient fluorite Bi3NbO7: Synthesis, electrical behavior and structural approach [J]. Materials Research Bulletin, 1998, 33(1): 739-762

[18]

ZhengJ. P., HuangJ., JowT. R.. The limitations of energy density for electrochemical capacitors [J]. Journal of Electrochemical Society, 1997, 144(6): 2026-2031

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/