Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution

Jun-lan Yi , Jian-hua Liu , Song-mei Li , Mei Yu , Guo-long Wu , Liang Wu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 6 -15.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (1) : 6 -15. DOI: 10.1007/s11771-011-0651-4
Article

Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution

Author information +
History +
PDF

Abstract

Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FE-SEM) were used to investigate the morphology evolution of the anodic oxide film. It is shown that above the breakdown voltage, oxygen is generated with the occurrence of drums morphology. These drums grow and extrude, which yields the compression stress. Subsequently, microcracks are generated. With continuous anodizing, porous oxides form at the microcracks. Those oxides grow and connect to each other, finally replace the microcrack morphology. The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy (AES). It is found that the film is divided into three layers according to the molar fractions of elements. The outer layer is incorporated by carbon, which may come from electrolyte solution. The thickness of the outer layer is approximately 0.2–0.3 μm. The molar fractions of elements in the intermediate layer are extraordinarily stable, while those in the inner layer vary significantly with sputtering depth. The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0–1.5 μm, respectively. Moreover, the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.

Keywords

titanium alloy / porous anodic oxide films / morphology evolution / growth mechanism

Cite this article

Download citation ▾
Jun-lan Yi, Jian-hua Liu, Song-mei Li, Mei Yu, Guo-long Wu, Liang Wu. Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution. Journal of Central South University, 2011, 18(1): 6-15 DOI:10.1007/s11771-011-0651-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AladjemA.. Anodic oxidation of titanium and its alloys [J]. J Mater Sci, 1973, 8: 688-704

[2]

PopaM. V., VasilescuE., DrobP., AnghelM., VasilescuC., RoscaI. M., LopezA. S.. Anodic passivity of some titanium base alloys in aggressive environments [J]. Mater Corros, 2002, 53: 51-55

[3]

FovetY., GalJ. Y., ChemlaF. T.. Influence of pH and fluoride concentration on titanium passivating layer stability of titanium dioxide [J]. Talanta, 2001, 53: 1053-1063

[4]

FengB., ChenJ. Y., QiS. K., HeL., ZhaoJ. Z., ZhangX. D.. Characterization of surface oxide films on titanium and bioactivity [J]. J Mater Sci Mater Med, 2002, 13: 457-464

[5]

VeltenD., BiehlV., AubertinF., ValeskeB., PossartW., BremeJ.. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization [J]. J Biomed Mater Res, 2002, 59: 18-28

[6]

SulY. T., JohanssonC. B., JeongY., AlbrektssonT.. The electrochemical oxide growth behavior on titanium in acid and alkaline electrolytes [J]. Med Eng Phys, 2001, 23: 329-346

[7]

SulY. T., JohanssonC. B., PetronisS., KrozerA., JeongY., WennerbergA., AlbrektssonT.. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition [J]. Biomater, 2002, 23: 491-501

[8]

DelplanckeJ. L., WinandR.. Galvanostatic anodization of titanium—II: Reactions efficiencies and electrochemical behavior model [J]. Electrochim Acta, 1988, 33: 1551-1559

[9]

ZwillingV., AucouturierM., CerettiE. D.. Anodic oxidation of titanium and TA6V alloy in chromic media: An electrochemical approach [J]. Electrochim Acta, 1999, 45: 921-929

[10]

MorG. K., VargheseO. K., PauloseM., ShankarK., GrimesC. A.. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties and solar energy applications [J]. Energy Mater Sol Cells, 2006, 90: 2011-2075

[11]

GongD., GrimesC. A., VargheseO. K., HuW., SinghR. S., ChenZ., DickeyE. C.. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J Mater Res, 2001, 16: 3331-3334

[12]

MorG. K., VargheseO. K., PauloseM., MukherjeeN., GrimesC. A.. Fabrication of tapered, conical-shaped titania nanotubes [J]. J Mater Res, 2003, 18: 2588-2593

[13]

ZhuX. L., KimK. H., JeongY.. Anodic oxide films containing Ca and P of titanium biomaterial [J]. Biomater, 2001, 22: 2199-2206

[14]

BeranekR., HildebrandH., SchmukiP.. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes [J]. Electrochem Solid-State Lett, 2003, 6: B12-B14

[15]

MacakJ. M., TsuchiyaH., TaveiraL., AldabergerovaS., SchmukiP.. Smooth anodic TiO2 nanotubes [J]. Angew Chem Int Ed, 2005, 44: 7463-7465

[16]

MarinoC. E. B., OliveiraE. M. D., RochafilhoR. C., BiaggioS. R.. On the stability of thin-anodic-oxide films of titanium in acid phosphoric media [J]. Corros Sci, 2001, 43: 1465-1476

[17]

TanakaS., HiroseN., TanakiT.. Effect of the temperature and concentration of NaOH on the formation of porous TiO2 [J]. J Electrochem Soc, 2005, 152: C789-C794

[18]

HabazakiH., UozumiM., KonnoH., ShimizuK., NagataS., AsamiK., MatsumotoK., TakayamaK., OdaY., SkeldonP., ThompsonG. E.. Influences of structure and composition on growth of anodic oxide films on Ti-Zr alloys [J]. Electrochim Acta, 2003, 48: 3257-3266

[19]

SongaH. J., ParkaS. H., JeongbS. H., ParkY. J.. Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes [J]. J Mater Process Tech, 2009, 209: 864-870

[20]

LiuJ.-h., YiJ.-l., LiS.-m., YuM., XuY.-zhen.. Fabrication and characterization of anodic oxide films on titanium alloy Ti-10V-2Fe-3Al [J]. Int J Miner Metal Mater, 2009, 16: 96-100

[21]

ChoiJ. R., WehrspohnB., LeeJ., GoseleU.. Anodization of nanoimprinted titanium: A comparison with formation of porous alumina [J]. Electrochim Acta, 2004, 49: 2645-2652

[22]

HabazakiH., UozumiM., KonnoH., ShimizuK., SkeldonP., ThompsonG. E.. Crystallization of anodic titania on titanium and its alloys [J]. Corros Sci, 2003, 45: 2063-2073

[23]

LuQ., AlberchJ., HashimotoT., VergaraS. J. G., HabazakiH., SkeldonP., ThompsonG. E.. Porous anodic oxides on titanium and on a Ti-W alloy [J]. Corros Sci, 2008, 50: 548-553

[24]

PetukhovD. I., EliseevA. A., KolesnikI. V., NapolskiiK. S., LukashimA. V., TretyakovY. D., GrigorievS. V., GrigorievaN. A., EckerlebeH.. Formation mechanism and packing options in tubular anodic titania films [J]. Micropor Mesopor Mat, 2008, 114: 440-447

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/