Optimal design of V-type ultrasonic motor

S. S. Jeong , C. H. Park , T. G. Park

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1247 -1250.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1247 -1250. DOI: 10.1007/s11771-010-0627-9
Article

Optimal design of V-type ultrasonic motor

Author information +
History +
PDF

Abstract

V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine. The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body. The ceramics have each direction of polarization. When two harmonic voltages with a 90° phase difference are applied to the ceramics, symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion. A finite element analysis (ATILA) was conducted to simulate the motion pattern for the contact tip of the stator. To develop a model that generates the maximum displacement at contact tip, the FEM program was used for various lengths. In addition, an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency. The maximum elliptical displacement is shown by W2L11 model, which has a ratio of ceramic width to length of 1:5.5. However, the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.

Keywords

ultrasonic motor / piezo-actuator / finite element method / optimal design / elliptical motion

Cite this article

Download citation ▾
S. S. Jeong, C. H. Park, T. G. Park. Optimal design of V-type ultrasonic motor. Journal of Central South University, 2010, 17(6): 1247-1250 DOI:10.1007/s11771-010-0627-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SashidaT.. Trial construction and operation of an ultrasonic vibration driven motor [J]. Japanese Journal of Applied Physics, 1982, 21: 713-720

[2]

KoH. P., KimS. S., BorodinasS. N., VasiljevP. E., KangC. Y., YoonS. J.. A novel tiny ultrasonic linear motor using the radial mode of a bimorph [J]. Sensor and Actuators A: Physical, 2006, 125(2): 477-481

[3]

ParkT. G., KimB. J., KimM. H., UchinoK.. Characteristics of the first longitudinal-fourth bending mode linear ultrasonic motors[J]. Japanese Journal of Applied Physics, 2002, 41: 7139-7143

[4]

ChongH. H., ParkT. G., KimM. H.. A study on driving characteristics of the cross type ultrasonic rotary motor [J]. Journal of Electroceramics, 2006, 17(2): 561-564

[5]

SongT. H., RichardE., ThomasR., CliveA., WesH.. Piezoelectric properties in the perovskite BiScO3-PbTiO3-(Ba,Sr)TiO3 ternary system [J]. Japanese Journal of Applied Physics, 2003, 42: 5181-5184

[6]

KimH. W., DongS., LaoratanakulP., UchinoK., ParkT. G.. Novel method for driving the ultrasonic motor[J]. Institute of Electrical and Electronics Engineers, 2002, 49(10): 1356-1362

[7]

WangX. X., MurakamiK., SugiyamaO., KanekoS.. Piezoelectric properties, densification begavior and microstructural evolution of low temperature sintered PZT ceramics with sintering aids [J]. Journal of the European Ceramic Society, 2001, 21(10): 1367-1370

[8]

KoH. P., KimS. S., KangC. Y., KimH. J., YoonS. J.. Optimization of a piezoelectric linear motor in terms of the contact parameters [J]. Materials Chemistry and Physics, 2005, 90(2): 322-326

[9]

HuH., FudaY., KatsunoM., YoshidaT.. A study on rectangular-bar-shaped multilayer transformer using length extensional vibration mode [J]. Japanese Journal of Applied Physics, 1999, 38(5): 3208-3212

[10]

MoritaT., KurosawaM. K., HiguchiT.. Cylindrical micro ultrasonic motor utilizing bulk lead zirconate titanate (PZT) [J]. Japanese Journal of Applied Physics, 1999, 38: 3347-3350

[11]

SaitoJ., FriendJ. R., NakamuraK., UehaS.. Resonant mode design for noncontact ultrasonic motor with levitated rotor [J]. Japanese Journal of Applied Physics, 2005, 44: 4666-4668

[12]

KandaT., MakinoA., SuzumoriK., MoritaT., KurosawaM. K.. A cylindrical micro ultrasonic motor using a micro-machined bulk piezoelectric transducer [J]. Sensor and Actuators A: Physical, 2006, 127: 131-138

[13]

HallA., AllahverdiM., AkdoganE. K., SafariA.. Development and electromechanical properties of multimaterial piezoelectric and electrostrictive PMN-PT monomorph actuators[J]. Journal of Electroceramics, 2005, 15(2): 143-150

[14]

KimH. W., PriyaS., UchinoK., NewnhamR. E.. Piezoelectric energy harvesting under high pre-stressed cyclic vibrations[J]. Journal of Electroceramics, 2005, 15(1): 27-34

[15]

RandalllC. A., KelnbergerA., YangG. Y., EitelR. E., ShroutT. R.. High strain piezoelectric multilayer actuators—A material science and engineering challenge [J]. Journal of Electroceramics, 2005, 15(3): 177-191

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/