Synergy of adsorption and visible light photocatalysis to decolor methyl orange by activated carbon/nanosized CdS/chitosan composite

Ru Jiang , Hua-yue Zhu , Guang-ming Zeng , Ling Xiao , Yu-jiang Guan

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1223 -1229.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1223 -1229. DOI: 10.1007/s11771-010-0623-0
Article

Synergy of adsorption and visible light photocatalysis to decolor methyl orange by activated carbon/nanosized CdS/chitosan composite

Author information +
History +
PDF

Abstract

Activated carbon/nanosized CdS/chitosan (AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature (≤60 °C) and ambient pressure. Methyl orange (MO) was chosen as a model pollutant to evaluate synergistic effect of adsorption and photocatalytic decolorization by this innovative photocatalyst under visible light irradiation. Effects of various parameters such as catalyst amount, initial MO concentration, solution pH and reuse of catalyst on the decolorization of MO were investigated to optimize operational conditions. The decolorization of MO catalyzed by AC/n-CdS/CS fits the Langmuir-Hinshelwood kinetics model, and a surface reaction, where the dyes are absorbed, is the controlling step of the process. Decolorization efficiency of MO is improved with the increase in catalyst amount within a certain range. The photodecolorization of MO is more efficient in acidic media than alkaline media. The decolorization efficiency of MO is still higher than 84% after five cycles and 60 min under visible light irradiation, which confirms the reusability of AC/n-CdS/CS composite catalyst.

Keywords

cadmium sulfide / chitosan / activated carbon / adsorption / visible light photocatalysis / methyl orange / decolorization

Cite this article

Download citation ▾
Ru Jiang, Hua-yue Zhu, Guang-ming Zeng, Ling Xiao, Yu-jiang Guan. Synergy of adsorption and visible light photocatalysis to decolor methyl orange by activated carbon/nanosized CdS/chitosan composite. Journal of Central South University, 2010, 17(6): 1223-1229 DOI:10.1007/s11771-010-0623-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KimY. M., LeeJ. Y., JeongH. R., LeeY. J., UmM. H., JeongK. M., YeoM. K., KangM.. Methyl orange removal over Zn-incorporated TiO2 photo-catalyst [J]. J Ind Eng Chem, 2008, 14(3): 396-400

[2]

AalA. A., BarakatM. A., MohamedR. M.. Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol [J]. Appl Surf Sci, 2008, 254(15): 4577-4583

[3]

KaurS., SinghV.. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation [J]. J Hazard Mater, 2007, 141(1): 230-236

[4]

BaranW., MakowskiA., WardasW.. The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2 [J]. Dyes Pigments, 2008, 76(1): 226-230

[5]

LiJ.-j., LiuS.-q., HeY.-y., WangJ.-qiang.. Adsorption and degradation of the cationic dyes over Co doped amorphous mesoporous titania-silica catalyst under UV and visible light irradiation [J]. Microporous Mesoporous Mater, 2008, 115(3): 416-425

[6]

DuttaP., FendlerJ. H.. Preparation of cadmium sulfide nanoparticles in self-replicating reversed micelles [J]. J Colloid Interface Sci, 2002, 247(1): 47-53

[7]

KumarA., MitalS.. Synthesis and photophysics of purine-capped Q-CdS nanocrystallites [J]. Photochem Photobiol Sci, 2002, 22(1): 737-741

[8]

NiT., NageshaD. K., RoblesJ., MatererN. F., MüssigS., KotovN. A.. CdS nanoparticles modified to chalcogen sites: New supramolecular complexes, butterfly bridging, and related optical effects[J]. J Am Chem Soc, 2002, 124(15): 3980-3992

[9]

XuW., LiaoY. T., AkinsD. L.. Formation of CdS nanoparticles within modified MCM-41 and SBA-15 [J]. J Phys Chem B, 2002, 106(43): 11127-11131

[10]

WangC.-y., ShangH.-m., TaoY., YuanT.-s., ZhangG.-wu.. Properties and morphology of CdS compounded TiO2 visible light photocatalytic nanofilms coated on glass surface [J]. Sep Purif Technol, 2003, 32(1/2/3): 357-362

[11]

TetsuyaK., GuanG. Q., AkiraY.. LaMnO3/CdS nanocomposite: A new photocatalyst for hydrogen production from water under visible light irradiation [J]. Chem Phys Lett, 2003, 371(5/6): 563-567

[12]

WuL., YuJ. C., FuX. Z.. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. J Mol Catal A: Chem, 2006, 244(1/2): 25-32

[13]

YiH., WuL. Q., BentleyW. E., GhodssiR., RubloffG. W., CulverJ. N., PayneG. F.. Biofabrication with chitosan [J]. J Biomacromol, 2005, 6(6): 2881-2894

[14]

RangelM. J. R., MonroyZ. R., LeyvaR. E., DiazF. P. E., ShiraiK.. Chitosan selectivity for removing cadmium(II), copper(II), and lead(II) from aqueous phase: pH and organic matter effect [J]. J Hazard Mater, 2009, 162(1): 503-511

[15]

AydnY. A., AksoyN. D.. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics [J]. Chem Eng J, 2009, 151(1/2/3): 188-194

[16]

LiZ., DuY.-m., ZhangZ.-l., PangD.-wen.. Preparation and characterization of CdS quantum dots chitosan biocomposite [J]. React Funct Polym, 2003, 55: 35-43

[17]

LiZ., DuY.-ming.. Biomimic synthesis of CdS nanoparticles with enhanced luminescence [J]. Mater Lett, 2003, 57(16): 2480-2484

[18]

FengD., WangF., ChenZ.-lin.. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film [J]. Sens Actuators B: Chem, 2009, 138(2): 539-544

[19]

İlhanU.. Kinetics of the adsorption of reactive dyes by chitosan [J]. Dyes Pigments, 2006, 70(2): 76-83

[20]

KyzasG. Z., LazaridisN. K.. Reactive and basic dyes removal by sorption onto chitosan derivatives [J]. J Colloid Interface Sci, 2009, 331(1): 32-39

[21]

ZhuH.-y., JiangR., XiaoL., ChangY.-h., GuanY.-j., LiX.-d., ZengG.-ming.. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation [J]. J Hazard Mater, 2009, 169(1/2/3): 933-940

[22]

JiangR., ZhuH.-y., LiX.-d., XiaoLing.. Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite nanoparticles [J]. Chem Eng J, 2009, 152(2/3): 537-542

[23]

MatosJ., LaineJ., HerrmannM.. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania [J]. J Catal, 2001, 200(1): 10-18

[24]

AranaJ., DonaR. J. M., RendonE. T., CaboC. G., GonzalezD. O., HerreraM. J. A., PerezP. J., ColonG., NavioJ. A.. TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study [J]. Appl Catal B: Environ, 2003, 44(2): 161-172

[25]

LiY.-j., LiX.-d., LiJ.-w., YinJing.. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study [J]. Water Res, 2006, 40(6): 1119-1126

[26]

SobanaN., SwaminathanM.. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53 [J]. Sol Energy Mater Sol Cells, 2007, 91(8): 727-734

[27]

LaineM. J., HerrmannJ., UzcateguiJ. M., BritoD.. Influence of activated carbon unpon titania on aqueous photocatalytic concecutive runs of phenol photodegradation [J]. Appl Catal B: Environ, 2007, 70(1/2/3/4): 461-469

[28]

XuD. P., HuangZ. H., KangF. Y., InagakiM., KoT. H.. Effect of heat treatment on adsorption performance and photocatalytic activity of TiO2-mounted activated carbon cloths [J]. Catal Today, 2008, 139(1/2): 64-68

[29]

XuJ.-j., AoY.-h., FuD.-g., YuanC.-wei.. Synthesis of fluorine-doped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light [J]. J Phys Chem Solids, 2008, 69: 2366-2370

[30]

SunJ.-h., WangX.-l., SunJ.-y., SunR.-x., SunS.-p., QiaoL.-ping.. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst [J]. J Mol Catal A: Chem, 2006, 260(1/2): 241-246

[31]

DvoranovaaD., BrezovaV., MazuraM., MalatibM. A.. Investigations of metal-doped titanium dioxide photocatalysts [J]. Appl Catal B: Environ, 2002, 37(2): 91-105

[32]

SathishM., ViswanathR. P.. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support [J]. Catal Today, 2007, 129(3/4): 421-427

[33]

SunL. P., DuY. M., YangJ. H., ShiX. W., LiJ., WangX. H., KennedyJ. F.. Conversion of crystal structure of the chitin to facilitate preparation of a 6-carboxychitin with moisture absorption-retention abilities [J]. Carbohydr Polym, 2006, 66(2): 168-175

[34]

SreenivasanK.. Thermal stability studies of some chitosan metal ion complexes using differential scanning calorimetry [J]. Polym Degrad Stab, 1996, 52(1): 85-87

[35]

NeppolianB., ChoiH. C., SakthivelS., ArabindooB., MurugesanV.. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4 [J]. Chemosphere, 2002, 46(2): 1171-1181

[36]

YoshidaH., OkamotoA., KataokaT.. Adsorption of acid dye on crosslinked chitosan fibers: Equilibria [J]. Chem Eng Sci, 1993, 48(12): 2267-2272

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/