Structures and magnetic properties of nanocomposite CoFe2O4-BaTiO3 fibers by organic gel-thermal decomposition process

Zhi Zhou , Xiang-qian Shen , Fu-zhan Song , Chun-ying Min

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1172 -1176.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1172 -1176. DOI: 10.1007/s11771-010-0614-1
Article

Structures and magnetic properties of nanocomposite CoFe2O4-BaTiO3 fibers by organic gel-thermal decomposition process

Author information +
History +
PDF

Abstract

The nanocomposite xCoFe2O4-(1−x)BaTiO3 (x=0.2, 0.3, 0.4, 0.5, molar fraction) fibers with fine diameters and high aspect ratios (length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts. The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer. The nanocomposite fibers consisting of ferrite (CoFe2O4) and perovskite (BaTiO3) are formed at the calcination temperature of 900 °C for 2 h. The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 °C. The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology. The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size, while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 °C. The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1−x)BaTiO3 (x=0.2, 0.3, 0.4, 0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.

Keywords

nanocomposite / CeFe2O4 / BaTiO3 / fiber / organic gel-thermal decomposition process / magnetic property

Cite this article

Download citation ▾
Zhi Zhou, Xiang-qian Shen, Fu-zhan Song, Chun-ying Min. Structures and magnetic properties of nanocomposite CoFe2O4-BaTiO3 fibers by organic gel-thermal decomposition process. Journal of Central South University, 2010, 17(6): 1172-1176 DOI:10.1007/s11771-010-0614-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IijimaS.. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58

[2]

MoralesA. M., LieberC. M.. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279(5348): 208-211

[3]

MartinC. R.. Nanomaterials: A membrane-based synthetic approach [J]. Science, 1994, 266(5193): 1961-1966

[4]

HanW.-q., FanS.-s., LiQ.-q., HuY.-dan.. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Science, 1997, 277(5330): 1287-1289

[5]

PanZ.-w., DaiZ.-r., WangZ.-lin.. Nanobelts of semiconducting oxides [J]. Science, 2001, 291(5510): 1947-1949

[6]

JuY. W., ParkJ. H., JungH. R., ChoS. J., LeeW. J.. Electrospun MnFe2O4 nanofibers: preparation and morphology [J]. Composites Science and Technology, 2008, 68(7/8): 1704-1709

[7]

CaoK., ShenX.-q., JingM.-x., ZhouJ.-xin.. Preparation of ferromagnetic metal fine fibers by organic gel-thermal reduction process [J]. Journal of Central South University of Technology, 2007, 14(5): 607-611

[8]

WangW.-z., LiuY.-k., XuC.-k., ZhengC.-l., WangG.-hou.. Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach [J]. Chemical Physics Letters, 2002, 362(1/2): 119-122

[9]

ZhangC.-y., ShenX.-q., ZhouJ.-x., JingM.-x., CaoKai.. Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process [J]. Journal of Sol-Gel Science and Technology, 2007, 42(1): 95-100

[10]

XiangJ., ShenX.-q., MengX.-feng.. Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties [J]. Materials Chemistry and Physics, 2009, 114: 362-366

[11]

SriniyasS., LiJ. Y.. The effective magnetoelectric coefficients of polycrystalline multiferroic composites [J]. Acta Materialia, 2005, 53: 4135-4142

[12]

HuaZ., YangP., HuangH.. Sol-gel template synthesis and characterization of magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes [J]. Materials Chemistry and Physics, 2008, 107: 541-546

[13]

XieS. H., LiJ. Y., LiuY. Y., LanL. N., JinG., ZhouY. C.. Electrospinning and multiferroic properties of NiFe2O4-Pb(Zr0.52Ti0.48)O3 composite nanofibers [J]. Journal of Applied Physics, 2008, 104: 024115

[14]

XiaoS.-h., JiangW.-f., LiL.-y., LiX.-Jian.. Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder [J]. Materials Chemistry and Physics, 2007, 106: 82-87

[15]

ZhangS.-p., DongD.-w., SuiY., LiuZ.-g., WangH.-x., QianZ.-n., SuW.-hui.. Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process [J]. Journal of Alloys and Compounds, 2006, 415: 257-260

[16]

RamajoL., ParraR., ReboredoM.. Heating rate and temperature effects on the BaTiO3 formation by thermal decomposition of (Ba,Ti) organic precursors during the Pechini process [J]. Materials Chemistry and Physics, 2008, 107: 110-114

[17]

RadwanN. R. E., ElshobakyH. G.. Solid-solid interactions between ferric and cobalt oxides as influenced by Al2O3-doping [J]. Thermochimica Acta, 2000, 360: 147-156

[18]

WangL.-q., LiuL., XueD.-feng.. Wet routes of high purity BaTiO3 nanopowders [J]. Journal of Alloys and Compounds, 2007, 440: 78-83

[19]

GarciaC. L. A., MontemayorS. M.. Synthesis of CoFe2O4 nanoparticles embedded in a silica matrix by the citrate precursor technique [J]. Journal of Magnetism and Magnetic Materials, 2005, 294: e43-e46

[20]

RamajoL., CastroM. S., ReboredoM. M.. Effect of silane as coupling agent on the dielectric properties of BaTiO3-epoxy composites [J]. Composites (Part A): Applied Science and Manufacturing, 2007, 32: 1852-1859

[21]

KasapogluN., BaykalA., KoseogluandY.. Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization [J]. Scripta Materialia, 2007, 57: 441-444

[22]

ChiuW. S., RadimanS., AbdshukorR., AbdullahM. H., KhiewP. S.. Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment [J]. Journal of Alloys and Compounds, 2008, 459: 291-297

[23]

StonerE. C., WohlfarthE. P. A.. Mechanism of magnetic hysteresis in heterogeneous alloys [J]. IEEE Transactions on Magnetics, 1991, 27(4): 3475-3518

[24]

MaazK., MumtazA., HasansinS. K., CeylanA.. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route [J]. Journal of Magnetism and Magnetic Materials, 2007, 308: 289-295

[25]

ChinnasamyC. N., JeyadevanB., ShinodaK., TohjiK., DjayaprawiraD. J., TakahashiM., JoseyphusR. J., NarayanasamyA.. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles [J]. Applied Physics Letters, 2003, 83: 2862-2864

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/