Structural evolution and optical characterization in argon diluted Si:H thin films obtained by plasma enhanced chemical vapor deposition

Zhi Li , Jian He , Wei Li , Hai-hong Cai , Yu-guang Gong , Ya-dong Jiang

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1163 -1171.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1163 -1171. DOI: 10.1007/s11771-010-0613-2
Article

Structural evolution and optical characterization in argon diluted Si:H thin films obtained by plasma enhanced chemical vapor deposition

Author information +
History +
PDF

Abstract

The structural evolution and optical characterization of hydrogenated silicon (Si:H) thin films obtained by conventional radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) through decomposition of silane diluted with argon were studied by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and ultraviolet and visible (UV-vis) spectroscopy, respectively. The influence of argon dilution on the optical properties of the thin films was also studied. It is found that argon as dilution gas plays a significant role in the growth of nano-crystal grains and amorphous network in Si:H thin films. The structural evolution of the thin films with different argon dilution ratios is observed and it is suggested that argon plasma leads to the nanocrystallization in the thin films during the deposition process. The nanocrystallization initiating at a relatively low dilution ratio is also observed. With the increase of argon portion in the mixed precursor gases, nano-crystal grains in the thin films evolve regularly. The structural evolution is explained by a proposed model based on the energy exchange between the argon plasma constituted with Ar* and Ar+ radicals and the growth regions of the thin films. It is observed that both the absorption of UV-vis light and the optical gap decrease with the increase of dilution ratio.

Keywords

nanocrystallization / plasma enhanced chemical vapor deposition (PECVD) / hydrogenated silicon (Si:H)

Cite this article

Download citation ▾
Zhi Li, Jian He, Wei Li, Hai-hong Cai, Yu-guang Gong, Ya-dong Jiang. Structural evolution and optical characterization in argon diluted Si:H thin films obtained by plasma enhanced chemical vapor deposition. Journal of Central South University, 2010, 17(6): 1163-1171 DOI:10.1007/s11771-010-0613-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MeierJ., FluckigerR., KeppnerH., ShahA.. Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? [J]. Appl Phys Lett, 1994, 65(7): 860-862

[2]

StaeblerD. L., WronskiC. R.. Reversible conductivity changes in discharge-produced amorphous Si [J]. Appl Phys Lett, 1977, 31(4): 292-294

[3]

FU Y Q, LUO J K, MILNE S B, FLEWITT A J, MILNE W I. Residual stress in amorphous and nanocrystalline Si films prepared by PECVD with hydrogen dilution [J]. Mat Sci Engr B, 124/125(s): 132–137.

[4]

Vallat-SauvainE., KrollU., MeierJ., ShahA., PohlJ.. evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution [J]. J Appl Phys, 2000, 87(6): 3137-3142

[5]

LiS. B., WuZ. M., JiangY. D., LiW., LiaoN. M., YuJ. S.. Structure and 1/f noise of boron doped polymorphous silicon films [J]. Nanotechnology, 2008, 19(8): 085706

[6]

DasU. K., MiddyaA. R., RathJ. K., LongeaudC., WilliamsonD. L., ChaudhuriP.. Nanostructures and defects in silicon-hydrogen alloys prepared by argon dilution [J]. J Non-cryst Solids, 2000, 276(1): 46-55

[7]

van ElzakkerG., NadazdyV., TichelaarF. D., MetselaarJ. W., ZemanM.. Analysis of structure and defects in thin silicon films deposited from hydrogen diluted silane [J]. Thin Solid Films, 2006, 511/512(7): 252-257

[8]

BhattacharyaK., DasD.. Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: structural and optical characterization [J]. Nanotechnology, 2007, 18(41): 415704

[9]

YoonJ. H., LeeJ. Y., ParkD. H.. Photoluminescence in microcrystalline silicon films grown from argon diluted silane [J]. J Non-cryst Solids, 2004, 338/340(s1): 465-468

[10]

YoungD. L., StradinsP., XuY., GedvilasL. M., IwaniczkoE., YanY., BranzH. M., WangQ., WilliamsonD. L.. Nanostructure evolution in hydrogenated amorphous silicon during hydrogen effusion and crystallization [J]. Appl Phys Lett, 2007, 90(8): 081923

[11]

DiZ. F., WangY. Q., NastasiM., ShaoL., LeeJ. K., TheodoreN. D.. Evidence for ion irradiation induced dissociation and reconstruction of Si—H bonds in hydrogen-implanted silicon [J]. Appl Phys Lett, 2008, 93(10): 104-103

[12]

DasU. K., ChaudhuriP., KshirsagarS. T.. Effect of argon dilution on the structure of microcrystalline silicon deposited from silane [J]. J Appl Phys, 1996, 80(9): 5389-5397

[13]

DasD.. Structural studies on Si:H network by Raman, micro-photoluminescence, electron microscopy and ultraviolet ellipsometry: Effect of Ar dilution to the SiH4-plasma [J]. Thin Solid Films, 2005, 476(2): 237-245

[14]

SoppeW. J., DevileeC., GeusebroekM., LofflerJ., MufflerH. J.. The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 2007, 515(19): 7490-7494

[15]

KushnerM. J.. A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon [J]. J Appl Phys, 1988, 63(8): 2532-2551

[16]

LangfordA. A., FleetM. L., NelsonB. P., LanfordW. A., MaleyN.. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon [J]. Phys Rev B, 1992, 45(23): 13367-13377

[17]

BrodskyM. H., CardonaM., CuomoJ. J.. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering [J]. Phys Rev B, 1977, 16(8): 3556-3571

[18]

LucovskyG., NemanichR. J., KnightsJ. C.. Structural interpretation of the vibrational spectra of a-Si: H alloys [J]. Phys Rev B, 1979, 19(4): 2064-2073

[19]

MarinovM., ZotovN.. Model investigation of the Raman spectra of amorphous silicon [J]. Phys Rev B, 1997, 55(5): 2938-2944

[20]

LiaoN. M., LiW., JiangY. D., WuZ. M., LiS. B., LiuZ., LiZ., JinX., ChenY. X.. Electron irradiation effects on the properties of heavily phosphorus-doped a-Si:H films prepared from undiluted silane [J]. J Phys D, 2008, 41(20): 205412

[21]

VeprekS., SarottF. A., IqbalZ.. Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon [J]. Phys Rev B, 1987, 36(6): 3344-3350

[22]

YueG., LorentzenJ. D., LinJ., HanD., WangQ.. Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon [J]. Appl Phys Lett, 1999, 75(4): 492-494

[23]

BustarretE., HachichaM. A., BrunelM.. Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy [J]. Appl Phys Lett, 1988, 52(20): 1675-1677

[24]

WoodD. L., TaucJ.. Weak absorption tails in amorphous semiconductors [J]. Phys Rev B, 1972, 5(8): 3144-3151

[25]

SansonnensL., HowlingA., HollensteinC., DorierJ. L., KrollU.. The role of metastable atoms in argon-diluted silane radiofrequency plasmas [J]. J Phys D, 1994, 27(7): 1406-1411

[26]

MakabeT., NakanoN., YamaguchiY.. Modeling and diagnostics of the structure of rf glow discharges in Ar at 13.56 MHz [J]. Phys Rev A, 1992, 45(4): 2520-2531

[27]

StaeblerD. L., PankoveJ. I.. Conductivity changes in dehydrogenated and rehydrogenated discharge-produced a-Si:H [J]. Appl Phys Lett, 1980, 37(7): 609-612

[28]

GuptaN. D., RayP. P., ChaudhuriP., DasU. K., VignoliS., JardinC.Study of amorphous to microcry-stalline silicon transformation from argon diluted silane [R], 2002, San Francisco, CA, Materials Research Society

[29]

TrwogaP. F., KenyonA. J., PittC. W.. Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters [J]. J Appl Phys, 1998, 83(7): 3789-3794

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/