Influence of Ti4+ doping on hyperfine field parameters of Mg0.95Mn0.05Fe2−2xTi2xO4 (0⩽x⩽0.7)

S. Kumar , R. Prakash , Alimuddin , H. K. Choi , B. H. Koo , J. I. Song , H. Chung , H. Jeong , C. G. Lee

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1139 -1143.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (6) : 1139 -1143. DOI: 10.1007/s11771-010-0609-y
Article

Influence of Ti4+ doping on hyperfine field parameters of Mg0.95Mn0.05Fe2−2xTi2xO4 (0⩽x⩽0.7)

Author information +
History +
PDF

Abstract

The mixed spinel ferrite system Mg0.95Mn0.05Fe2−2xTi2xO4 (0⩽x⩽0.7) was synthesized by the conventional solid-state reaction technique. The effect of Ti4+ doping was studied by using the Mössbauer spectroscopy measurements at room temperature. From the analysis of the Mössbauer spectra, it is observed that s-electron density, electric field gradient (EFG), quadrupole coupling constant (QCC) and the net hyperfine magnetic fields acting on the Mössbauer nuclei-FeA3+ and FeB3+ change with the increase of Ti4+ doping in Mg0.95Mn0.05Fe2O4. The hyperfine magnetic field decreases with the increase of Ti4+ doping.

Keywords

spinel ferrite / Mössbauer spectroscopy / hyperfine magnetic field / isomer shift / Ti4+ doping

Cite this article

Download citation ▾
S. Kumar, R. Prakash, Alimuddin, H. K. Choi, B. H. Koo, J. I. Song, H. Chung, H. Jeong, C. G. Lee. Influence of Ti4+ doping on hyperfine field parameters of Mg0.95Mn0.05Fe2−2xTi2xO4 (0⩽x⩽0.7). Journal of Central South University, 2010, 17(6): 1139-1143 DOI:10.1007/s11771-010-0609-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrabersV. A. M.Handbook of magnetic materials [M], 1995, Amsterdam, Elsevier: 8

[2]

KumarS., KumarR., DograA., ReddyV. R., BanerjeeA., Alimuddin. Mössbauer and magnetic studies of multiferroic Mg0.95Mn0.05Fe2−2xTi2xO4 system [J]. Journal of Applied Physics, 2006, 99(8): 08M910

[3]

BurghartF. J., PotzelW., KalviusG. M., SchreierE., GrosseG., NoakesD. R., SchaferW., KockelmannW., CampbellS. J., KaczmarekW. A., MartinA., KrauseM. K.. Magnetism of crystalline and nanostructured ZnFe2O4 [J]. Physica B: Condensed Matter, 2000, 289/290: 286-290

[4]

YafetY., KittelC.. Antiferromagnetic arrangements in ferrites [J]. Physical Review, 1952, 87(2): 290-294

[5]

DormannJ. M., NoguesM.. Magnetic structures in substituted ferrites [J]. Journal of Physics: Condensed Matter, 1990, 2(5): 1223-1238

[6]

CoeyJ. M. D.. Noncollinear spin structures [J]. Canadian Journal of Physics, 1987, 65(10): 1210-1232

[7]

BrandR. A., LauerJ., HerlachD. M.. The evaluation of hyperfine field distributions in overlapping and asymmetric Mössbauer spectra: A study of the amorphous alloy Pd77.5−xCu6Si16.5Fex [J]. Journal of Physics F: Metal Physics, 1983, 13(3): 675-684

[8]

SchoenbergE. A.. Ferrites for microwave circuits and digital computers [J]. Journal Applied Physics, 1954, 25(2): 152-154

[9]

BabaP. D., GyorgyE. M., SchnettlerF. J.. Two-phase ferrites for high-speed switching [J]. Journal Applied Physics, 1963, 34(4): 1125-1126

[10]

DicksonD. P. E., BerryF. J.Mössbauer spectroscopy [M], 1986, London, Cambridge University Press: 22

[11]

NeelL.. Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism [J]. Annual Physics, 1948, 3: 137-198

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/