Citrate-stabilized CdSe/CdS quantum dots as fluorescence probe for protein determination

Xin Fu , Ke-long Huang , Su-qin Liu

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (4) : 720 -725.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (4) : 720 -725. DOI: 10.1007/s11771-010-0546-9
Article

Citrate-stabilized CdSe/CdS quantum dots as fluorescence probe for protein determination

Author information +
History +
PDF

Abstract

A rapid, ultrasensitive and convenient fluorescence measurement technology based on the enhancement of the fluorescence intensity resulting from the interaction of functionalized CdSe/CdS quantum dots (QDs) with bovine serum albumin (BSA) was proposed. The citrate-stabilized CdSe/CdS (QDs) were synthesized by using Se powder and Na2S as precursors instead of any pyrophoric organometallic precursors. The modified CdSe/CdS QDs are brighter and more stable against photobleaching in comparison with organic fluorophores. At pH 7.0, the fluorescence signal of CdSe/CdS is enhanced by increasing the concentration of BSA in the range of 0.1–10 μg/mL, and the low detection limit is 0.06 μg/mL. A linear relationship between the enhanced fluorescence peak intensity (ΔF) and BSA concentration (c) is established using equation ΔF=50.7c+16.4 (R=0.996 36). Results of determination for BSA in three synthetic samples are identical with the true values, and the recovery (98.9%–102.4%) and relative standard deviation (RSD, 1.8%–2.5%) are satisfactory.

Keywords

CdSe/CdS quantum dots / bovine serum albumin / protein / fluorescence measurement

Cite this article

Download citation ▾
Xin Fu, Ke-long Huang, Su-qin Liu. Citrate-stabilized CdSe/CdS quantum dots as fluorescence probe for protein determination. Journal of Central South University, 2010, 17(4): 720-725 DOI:10.1007/s11771-010-0546-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LowryO. H., RosebroughN. J., FarrA. L.. Protein measurement with the folin phenol reagent [J]. The Journal of Biological Chemistry, 1951, 193(1): 265-275

[2]

DoumasB. T., WatsonW. A., BiggsH. G.. Albumin standards and the measurement of serum albumin with bromcresol green [J]. Clinica Chimica Acta, 1971, 31(1): 87-96

[3]

BradfordM. M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(7): 248-254

[4]

LynchJ. M., BarbanoD. M.. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products [J]. Journal of AOAC International, 1999, 82(6): 1389-1398

[5]

LeeI. H., PintoD., ArriagaE. A., ZhangZ., DovichiN. J.. Picomolar analysis of proteins using electrophoretically mediated microanalysis and capillary electrophoresis with laser-induced fluorescence detection [J]. Analytical Chemistry, 1998, 70(21): 4546-4548

[6]

GuoC.-y., WuX., YangJ.-h., WangF., JiaZ., RanD.-h., ZhengJ.-hua.. Determination of proteins using fluorescence enhancement of Tb3+-benzoyl-acetone-sodium dodecyl benzene sulfonate-protein system [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(1): 50-55

[7]

PosokhovY. O., LadokhinA. S.. Lifetime fluorescence method for determining membrane topology of proteins [J]. Analytical Biochemistry, 2006, 348(1): 87-93

[8]

WangF., YangJ.-h., WuX., SunC.-x., LiuS.-f., GuoC.-y., WangFeng.. Fluorescence enhancement effect for the determination of proteins with morin-Al3+-cetyltrimethylammonium bromide [J]. Talanta, 2005, 67(4): 836-842

[9]

SantosM., NadiS., GoicoecheaH. C., HaldarM. K., CampigliaA. D., MallikS.. Artificial neural networks for qualitative and quantitative analysis of target proteins with polymerized liposome vesicles [J]. Analytical Biochemistry, 2007, 361(1): 109-119

[10]

ZhuX.-s., SunJ., HuY.-yan.. Determination of protein by hydroxypropyl-β-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe [J]. Analytica Chimica Acta, 2007, 596(2): 298-302

[11]

Perez-ruizT., Martinez-LozanoC., TomasV., FenollJ.. Determination of proteins in serum by fluorescence quenching of Rose Bengal using the stopped-flow mixing technique [J]. Analyst, 2000, 125(3): 507-510

[12]

WardK. M.. Renal function (microalbuminuria) [J]. Analytical Chemistry, 1995, 67(12): 383R-391R

[13]

HouX.-l., TongX.-f., DongW.-j., DongC., ShuangS.-min.. Synchronous fluorescence determination of human serum albumin with methyl blue as a fluorescence probe [J]. Spectrochimica Acta Part A, 2007, 66(3): 552-556

[14]

LiangJ.-g., HuangS., ZengD.-y., HeZ.-k., JiX.-h., AiX.-p., YangH.-xi.. CdSe quantum dots as luminescent probes for spironolactone determination [J]. Talanta, 2006, 69(1): 126-130

[15]

MaY., YangC., LiN., YangX.-rong.. A sensitive method for the detection of catecholamine based on fluorescence quenching of CdSe nanocrystals [J]. Talanta, 2005, 67(5): 979-983

[16]

XieM., LiuH.-h., ChenP., ZhangZ.-l., WangX.-h., XieZ.-x., DuY.-m., PanB.-q., PangD.-wen.. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging [J]. Chemical Communications, 2005, 44: 5518-5520

[17]

DubertretB., SkouridesP., NorrisD. J., NoireauxV., BrivanlouA. H., LivchaberA.. Invivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002, 298(5599): 1759-1762

[18]

YangD.-z., XuaS.-k., ChenQ.-f., WangYan.. One system with two fluorescence resonance energy transfer (FRET) assembles among quantum dots, gold nanoparticles and enzyme [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329(1): 38-43

[19]

LiaoP., YanZ.-y., XuaZ.-j., SunXiao.. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots [J]. Spectrochimica Acta Part A, 2009, 72(5): 1066-1070

[20]

HuangC.-p., LiuS.-w., ChenT.-m., LiY.-kuen.. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots [J]. Sensors and Actuators B, 2008, 130(1): 338-342

[21]

SukhanovaA., DevyJ., VenteoL., KaplanH., ArtemyevM., OleinikovV., KlinovD., PluotM., CohenJ. H. M., NabievaI.. Biocompatible fluorescent nanocrystels for immunolabeling of membrane proteins and cells [J]. Analytical Biochemistry, 2004, 324(1): 60-67

[22]

WillardD. M., CarilloL. L., JungJ., OrdenA. V.. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay [J]. Nano Letters, 2001, 1(9): 469-474

[23]

YuY., LaiY., ZhengX.-l., WuJ.-z., LongZ.-y., LiangC.-sui.. Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA [J]. Spectrochimica Acta Part A, 2007, 68(5): 1356-1361

[24]

WangL., WangL.-y., ZhuC.-q., WeiX.-w., KanX.-wen.. Preparation and application of functionalized nanoparticles of CdS as a fluorescence probe [J]. Analytica Chimica Acta, 2002, 468(1): 35-41

[25]

GuL., LiF., ZhangY., GuD.-qing.. Preparation of CdSe quantum dots and coating with polylactide [J]. Journal of Central South University: Science and Technology, 2009, 40(4): 904-908

[26]

RogachA. L., NageshaD., OstranderJ. W., GiersigM., KotovN. A.. “Raisin bun”—Type composite spheres of silica and semiconductor nanocrystals [J]. Chemistry of Material, 2000, 12(9): 2676-2685

[27]

WangY., TangZ., Correa-duarteM. A., Liz-marzanL. M., KotovN. A.. Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films [J]. Journal of the American Chemical Society, 2003, 125(10): 2830-2831

[28]

DengD.-w., YuJ.-s., YiPan.. Water-soluble CdSe and CdSe/CdS nanocrystals: A greener synthetic route [J]. Journal of Colloid and Interface Science, 2006, 299(1): 225-232

[29]

HuangF.-h., ChenG.-nan.. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 70(2): 318-323

[30]

KlaymanD. L., GriffinT. S.. A facile method for the introduction of selenium into organic molecules [J]. Journal of the American Chemical Society, 1973, 95(1): 197-199

[31]

ChangW.-g., ShenY.-h., XiaA.-j., ZhangH., WangJ., LuW.-sheng.. Controlled synthesis of CdSe and CdSe/CdS core/shell nanoparticles using Gemini surfactant Py-16-10-16 and their bioconjugates with BSA [J]. Journal of Colloid and Interface Science, 2009, 335(2): 257-263

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/