Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network

Juan-hua Su , Shu-guo Jia , Feng-zhang Ren

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (4) : 715 -719.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (4) : 715 -719. DOI: 10.1007/s11771-010-0545-x
Article

Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network

Author information +
History +
PDF

Abstract

In order to predict and control the properties of Cu-Cr-Sn-Zn alloy, a model of aging processes via an artificial neural network (ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up. The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy. Aged at 470–510 °C for 4-1 h, the optimal combinations of hardness 110–117 (HV) and electrical conductivity 40.6–37.7 S/m are available respectively.

Keywords

Cu-Cr-Sn-Zn alloy / aging parameter / hardness / electrical conductivity / artificial neural network

Cite this article

Download citation ▾
Juan-hua Su, Shu-guo Jia, Feng-zhang Ren. Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network. Journal of Central South University, 2010, 17(4): 715-719 DOI:10.1007/s11771-010-0545-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SuJ.-h., LiuP., LiH.-jun.. Phase transformation in Cu-Cr-Zr-Mg alloy [J]. Materials Letters, 2007, 61: 4963-4966

[2]

ZhangH., ZhangH.-g., LiL.-xing.. Hot deformation behavior of Cu-Fe-P alloys during compression at elevated temperatures [J]. Journal of Materials Processing Technology, 2009, 209: 2892-2896

[3]

YoshikiY., GenS., KatsuhiroY.. High-strength and high-electrical-conductivity copper alloy for high-pin-count lead frames [J]. Hitachi Cable Review, 2000, 19: 65-70

[4]

XieH., JiaL., LuZ.-lin.. Microstructure and solidification behavior of Cu-Ni-Si alloys [J]. Materials Characterization, 2009, 60: 114-118

[5]

HuangF.-x., MaJ.-sheng.. Precipitation in Cu-Ni-Si-Zn alloy for lead frame [J]. Materials Letters, 2003, 57: 2135-2139

[6]

WangZ.-q., ZhongY.-b., CaoG.-hui.. Influence of DC electric current on the hardness of thermally aged Cu-Cr-Zr alloy [J]. Journal of Alloys and Compounds, 2009, 479: 303-306

[7]

HuangF.-x., MaJ.-sheng.. Analysis of phases in a Cu-Cr-Zr alloy [J]. Scripta Materialia, 2003, 48: 97-102

[8]

RenseiF.. New high-strength and high-conductivity copper alloy EFTEC-64 [J]. Journal of the Japan Copper and Brass Research Association, 1988, 27: 109-114

[9]

NaotsuguI.. The precipitation behaviour of Cu-Cr-Sn alloy [J]. Journal of the Japan Copper and Brass Research Association, 1985, 24: 225-230

[10]

SuJ.-h., LiuP., DongQ.-ming.. Aging study of rapidly solidified and solid-solution Cu-Cr-Sn-Zn alloy [J]. Journal of Materials Processing Technology, 2008, 205: 366-369

[11]

ZhangH.-l., ZouZ., LiJie.. Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods [J]. Journal of Central South University of Technology, 2008, 15(1): 39-43

[12]

FangS.-f., WangM.-p., WangY.-hui.. Evolutionary artificial neural network approach for predicting properties of Cu-15Ni-8Sn-0. 4Si alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1223-1228

[13]

SuJ.-h., LiH.-jun.. Modelling of rolling and aging processes in copper alloy by Levenberg-Marquardt BP algorithm [J]. Lecture Notes in Computer Science, 2005, 3611: 185-189

[14]

LiA.-j., LiH.-j., LiK.-zhi.. Applications of neural networks and genetic algorithms to CVI processes in carbon/carbon composites [J]. Acta Materialia, 2004, 52: 299-305

[15]

OmerE., ErdoganK., MuratP.. Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks [J]. Journal of Materials Processing Technology, 2008, 200: 146-152

[16]

MohammedH., AdelM. H., AbdallaA.. Prediction of tribological behavior of aluminum-copper based composite using artificial neural network [J]. Journal of Alloys and Compounds, 2009, 470: 584-588

[17]

LakshminarayananA. K., BalasubramanianV.. Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 9-18

[18]

KapoorR., PalD., ChakravarttyJ. K.. Use of artificial neural networks to predict the deformation behavior of Zr-2. 5Nb-0.5Cu [J]. Journal of Materials Processing Technology, 2005, 169: 199-205

[19]

SivasankaranS., NarayanasamyR., JeyapaulR. C.. Modelling of wrinkling in deep drawing of different grades of annealed commercially pure aluminium sheets when drawn through a conical die using artificial neural network [J]. Materials and Design, 2009, 30(8): 3193-3205

[20]

SoffaW. A., LaughlinD. E.. High-strength age hardening copper-titanium alloys [J]. Progress in Materials Science, 2004, 49: 347-366

[21]

LiuP., KangB.-x., CaoX.-guo.. Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A, 1999, 265: 262-267

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/