Effect of age condition on fatigue properties of 2E12 aluminum alloy

Liang Yan , Feng-shan Du , Sheng-long Dai , Shou-jie Yang

Journal of Central South University ›› 2010, Vol. 17 ›› Issue (4) : 697 -702.

PDF
Journal of Central South University ›› 2010, Vol. 17 ›› Issue (4) : 697 -702. DOI: 10.1007/s11771-010-0542-0
Article

Effect of age condition on fatigue properties of 2E12 aluminum alloy

Author information +
History +
PDF

Abstract

The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated. The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that the alloy exhibits higher fatigue crack propagation (FCP) resistance in T3 condition than in T6 condition, the fatigue life is increased by 54% and the fatigue crack growth rate (FCGR) decreases significantly. The fatigue fractures of the alloy in T3 and T6 conditions are transgranular. But in T3 condition, secondary cracks occur and fatigue striations are not clear. In T6 condition, ductile fatigue striations are observed. The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.

Keywords

2E12 aluminum alloy / aging / fatigue life / fatigue crack growth rate / fatigue fracture

Cite this article

Download citation ▾
Liang Yan, Feng-shan Du, Sheng-long Dai, Shou-jie Yang. Effect of age condition on fatigue properties of 2E12 aluminum alloy. Journal of Central South University, 2010, 17(4): 697-702 DOI:10.1007/s11771-010-0542-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GoldenP. J., GrandtA. F., BrayG. H.. A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens [J]. International Journal of Fatigue, 1999, 21(1): S211-S219

[2]

BrayG. H., BucciR. J., ColvinE. L., KulakM.. Effect of prior corrosion on the S/N fatigue performance of aluminum sheet alloys 2024-T3 and 2524-T3 [J]. ASTM Special Technical Publication, 1997, 1298: 89-103

[3]

WilliamC., JohnL., JamesT.. Aluminum alloys for aircraft structure [J]. Advanced Materials and Processes, 2002, 160(12): 27-29

[4]

IauJ., KulakM.. A new paradigm in the design of aluminum alloys for aerospace applications [J]. Materials Science Forum, 2000, 331/337: 127-140

[5]

StarkeE. A., StaleytJ. T.. Application of modern aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32(2/3): 131-172

[6]

LiuG., ZhengZ.-q., YangS.-j., DaiS.-l., LiS.-jie.. The fatigue performance and fatigue crack propagation behavior of 2E12 Al alloy [J]. Materials for Mechanical Engineering, 2007, 31(11): 65-68

[7]

LiuGang.Study on microstructure and fatigue performance of 2E12 aluminum alloy [D], 2007, Changsha, Central South University: 42-50

[8]

DuF.-s., YanL., DaiS.-l., YangS.-jie.. Study on fatigue performance of high strength aluminum alloy [J]. Journal of Aeronautical Materials, 2009, 29(1): 96-100

[9]

LiH., WangZ.-x., WeiX.-y., ZhengZ.-qiao.. Effect of solution treatment time on microstructures and fatigue properties of aluminum alloy 2E12 [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 148-152

[10]

GB/T 6398-2000. Standard test method for metallic materials fatigue crack growth [S].

[11]

ASTM E647-93. Standard Test method for constant load amplitude fatigue crack growth rates above 10−8 m/cycle [S].

[12]

WalshJ. A., JataK. V., StarkeE. A.Jr. The influence of Mn dispersoid content and stress state on ductile fracture of 2134 type Al alloys [J]. Acta Metallurgica, 1989, 37(11): 2861-2871

[13]

StarinkM. J., GaoN., YanJ. L.. The origins of room temperature hardening of Al-Cu-Mg alloys [J]. Materials Science and Engineering A, 2004, 387/389: 222-226

[14]

StarinkM. J.. The analysis of Al-based alloys by calorimetry: Quantitative analysis of reactions and reaction kinetics [J]. International Materials Review, 2004, 49(3/4): 191-226

[15]

WangS. C., StarinkM. J.. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys [J]. International Materials Review, 2005, 50(4): 193-215

[16]

WangS. C., StarinkM. J.. Two types of S phase precipitates in Al-Cu-Mg alloys [J]. Acta Materialia, 2007, 55(3): 933-941

[17]

KhanI. N., StarinkM. J., YanJ. L.. A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys [J]. Materials Science and Engineering A, 2008, 472(1/2): 66-74

[18]

HornbogenE., GahrK. Z.. Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy [J]. Acta Metallurgica, 1976, 24(6): 581-592

[19]

CotterellB., RiceJ. R.. Slightly curved or kinked cracks [J]. International Journal of Fracture, 1980, 16(2): 155-159

[20]

SureshS., ShihC. F.. Plastic near-tip fields for branched cracks [J]. International Journal of Fracture, 1986, 30(4): 237-259

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/