Effect of metallic content on mechanical property of Ni/(10NiO-NiFe2O4) cermets

Jie Li , Gang Zhang , Shao-long Ye , Yan-qing Lai , Zhong-liang Tian , Xiao-gang Sun

Journal of Central South University ›› 2006, Vol. 13 ›› Issue (4) : 347 -352.

PDF
Journal of Central South University ›› 2006, Vol. 13 ›› Issue (4) : 347 -352. DOI: 10.1007/s11771-006-0047-z
Article

Effect of metallic content on mechanical property of Ni/(10NiO-NiFe2O4) cermets

Author information +
History +
PDF

Abstract

Ni/ (10NiO-NiFe2O4) cermets were fabricated by using cold pressing-sintering method. The phase composition and effect of metallic content on the mechanical properties such as bending strength, Vickers’ hardness, fracture toughness and thermal shock resistance were studied. The results show that the cermets consist of Ni, NiO and NiFe2O4. Within the range of metallic content from 0 to 17% (mass fraction), the relative density decreases with the increase of metallic content and the decrease of sintering temperature, Vickers’ hardness decreases from 7 097 MPa to 4 814 MPa and the bending strength increases from 110 MPa to 157 MPa, and the fracture toughness reaches the optimal value of 5.11 MPa · m1/2 at the metallic content of about 10%. The residual strength after thermal shock testing falls sharply as the thermal shock temperature difference is above 200 °C. The cermets samples, whose metallic content is 10% and 15%, respectively, exhibit promising property of thermal shock resistance at 960 °C with six cycles of heating and quenching testing.

Keywords

aluminum electrolysis / inert anode / NiFe2O4 / fracture toughness / thermal shock resistance

Cite this article

Download citation ▾
Jie Li, Gang Zhang, Shao-long Ye, Yan-qing Lai, Zhong-liang Tian, Xiao-gang Sun. Effect of metallic content on mechanical property of Ni/(10NiO-NiFe2O4) cermets. Journal of Central South University, 2006, 13(4): 347-352 DOI:10.1007/s11771-006-0047-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LIU Ye-xiang. Advance on the research and development of inert anode and wettable cathode in the aluminum electrolysis [J]. Light Metals, 2001(5): 26–29. (in Chinese)

[2]

PawlekR PSchneiderW. Inert anodes: an update[C]. Light Metals, 2002, Warrendale, TMS: 449-456

[3]

GrayP TMillerR E. Corrosion and passivation of cermet inert anodes in cryolite-type electrolytes[C]. Light Metals, 1986, Warrendale, TMS: 309-320

[4]

WeyandJ D, DeyoungD H, RayS PInert anodes for aluminum smelting[R], 1986, Washington D C, Aluminum Company of America

[5]

AlcomT R, TabereauxA T, RichardsN E, et al.SubodhK D, et al.. Operational results of pilot cell test with cermet inert anodes[C]. Light Metals, 1993, Warrendale, TMS: 433-443

[6]

YuXian-jin, QiuZhu-xian, JinSong-zhe. Corrosion of zinc ferrite in NaF-AlF3-Al2O3 molten salts [J]. Journal of Chinese Society for Corrosion and Protection, 2000, 20(5): 275-280

[7]

LaiYan-qing, QinQing-wei, DuanHua-nan, et al.. Materials fabrication and corrosion behavior of NiFe2O4 cermet inert anodes [J]. Journal of Central South University: Science and Technology, 2004, 35(6): 885-890(in Chinese)

[8]

DeYoungD HMillerR E. Solubilities of oxides for inert anodes in cryolite-based melts[C]. Light Metals, 1986, Warrendale, TMS: 299-307

[9]

LiJie, DuanHua-nan, LaiYan-qing, et al.. Effect of NiO content on the corrosion behavior of Ni-xNiO-NiFe2O4 cermets in Na3AlF6-Al2O3 melts[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(6): 1180-1186

[10]

LaiYan-qing, ZhangGang, LiJie, et al.. Effect of adding Cu-Ni on mechanical capacity and electrical conductivity of NiFe2O4-based cermets [J]. Journal of Central South University: Science and Technology, 2004, 35(6): 880-884(in Chinese)

[11]

ZhangLei, ZhouKe-cao, LiZhi-you, et al.. Effect of atmosphere on densification in sintering nickel ferrite ceramic for aluminum electrolysis [J]. Trans Nonferrous Met Soc China, 2004, 14(6): 1002-1006(in Chinese)

[12]

ZhangQing-chunMechanical properties of ceramics[M], 1987, Beijing, Science Press(in Chinese)

[13]

XuMing-xia, DuanRen-guan. Effect of Al2O3 content on the sinterability and mechanical properties of Y-TZP ceramics [J]. Bulletin of the Chinese Ceramic Society, 1997, 16(4): 40-42(in Chinese)

[14]

WangXin, WangPei-ling, ChengYi-bing. Effect of TiO2 and MgO additions on microstructures of Al2O3[J]. Journal of Inorganic Materials, 2001, 16(5): 979-984(in Chinese)

[15]

WanJun-xi, ZengQing-guang, XuYu-fen. Influence of rare-earth oxide on the densification of pressureless sintering zirconia ceramics [J]. Journal of Hefei University of Technology, 2000, 23(4): 555-557(in Chinese)

[16]

WangLing-senSpecial ceramics[M], 2002, Changsha, Central South University of Technology Publishing Press: 418-497(in Chinese)

[17]

HuangPei-yunPowder metallurgical theory[M], 19972nd ed.Beijing, Metallurgical Industrial Press: 265-331(in Chinese)

[18]

QuenardO, LaurentCh, PeigneyA, et al.. Zirconia-spinel composites. Part II: Mechanical properties [J]. Materials Research Bulletin, 2000, 35(12): 1979-1987

[19]

YuX J, ZhangG L, QiuZ X, et al.. Electrical conductivity and corrosion resistance of ZnFe2O4-based materials used as inert anode for aluminum electrolysis[J]. Journal of Shanghai University, 1999, 3(3): 251-254

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/