Determination of fatigue cracking direction in composite laminates

Yao Dai , Gui-xiang Hao , Yong-dong Li , Jia-wen He , Jian-guo Cui , Nian Li , Yong-hui Fu , Jun Sun

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (3) : 255 -258.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (3) : 255 -258. DOI: 10.1007/s11771-005-0138-2
Article

Determination of fatigue cracking direction in composite laminates

Author information +
History +
PDF

Abstract

The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion, i.e. a ratio criterion of strain energy release rate, is proposed to determine the growing direction of a fatigue crack in the composite laminates. The method of arbitrary lines, which is very effective to solve the problems with high gradient feature, is used to analyze the experimental results at the key moments when a crack kinks, turns into the interface, or bifurcates. An approximate method of computing the energy release rate is given. The fatigue fracture tests of composite laminates are carried out, and the numerical predictions of crack growing directions agree well with the experimental results. It is concluded that the methods suggested in this paper are effective to obtain the cracking history and the growing path of a fatigue crack in composite laminates.

Keywords

composite / fatigue / crack growth / method of arbitrary lines

Cite this article

Download citation ▾
Yao Dai, Gui-xiang Hao, Yong-dong Li, Jia-wen He, Jian-guo Cui, Nian Li, Yong-hui Fu, Jun Sun. Determination of fatigue cracking direction in composite laminates. Journal of Central South University, 2005, 12(3): 255-258 DOI:10.1007/s11771-005-0138-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WilliamsM L. The stress around a fault or crack in dissimilar media[J]. Bull Seismol Soc Am, 1959, 49(2): 199-204

[2]

ZakA R, WilliamsM L. Crack point singularities at a bimaterial interface[J]. J Appl Mech, 1963, 30(3): 142-143

[3]

CotterellB, RiceJ R. Slightly curved or kinked cracks [J]. Int J Fract, 1980, 16(2): 155-169

[4]

RiseJ R. Elastic fracture concepts for interfacial cracks[J]. J Appl Mech, 1988, 55(3): 98-103

[5]

ShihC F, AsaroR J. Elastic-plastic analysis of cracks on bimaterial interfaces: Part I. Small scale yielding [J]. J Appl Mech, 1988, 55(2): 299-316

[6]

SuoZ, HutchinsonJ W. Interface crack between two elastic layers[J]. Int J Fract, 1990, 43(5): 1-18

[7]

WilliamsJ G. On the calculation of energy release rates for cracked laminates[J]. Int J Fract, 1988, 36(2): 101-119

[8]

HayashiK, Nemat-NasserS. Energy release rate and crack kinking under combined loading[J]. J Appl Mech, 1981, 48(9): 520-524

[9]

EvansA G, DalgleishB J, HeM, et al.. On crack path selection and the interface fracture energy in bimaterial systems[J]. Acta Metall, 1989, 37(12): 3249-3254

[10]

HeM Y, HutchinsonJ W. Kinking of crack out of an interface[J]. J Appl Mech, 1989, 56(2): 270-278

[11]

HutchinsonJ W, MearM E, RiceJ R. Crack paralleling an interface between dissimilar materials[J]. J Appl Mech, 1987, 54(4): 828-832

[12]

ChaiH. A note on crack trajectory in an elastic strip bounded by rigid substrates[J]. Int J Fract, 1987, 32(3): 211-213

[13]

FleckN A, HutchinsonJ W, SuoZ. Crack path selection in brittle adhesives[J]. Int J Solids and Structure, 1991, 27(13): 1683-1703

[14]

HeM Y, HutchinsonJ W. Crack deflection at an interface between dissimilar elastic materials[J]. Int J Solids and Structure, 1989, 25(9): 1053-1067

[15]

Xanthis L S, Schwab C. The method of arbitrary lines[J]. C R Acad Sci Paris, 1991, t. 312, Serie I: 181–187.

[16]

DaiY, XanthisL S, ZhengL. The application of Kantorovich method and method of lines to high gradient problems[J]. Acta Mechanica Sinica, 1995, 27(Suppl): 74-80(in Chinese)

[17]

DaiY, XanthisL S, ZhengL, et al.. MOL and MAL for high gradient problems[A]. ZHONG Zhi-hua. Proc the First Int Conf on Eng Computation and Computer Simulation[C], 1995, Changsha, Hunan University Press: 43-49

[18]

AndersonG P, de VriesK L, WilliamsM L. Mixed mode stress field effect in adhesive fracture[J]. Int J Fract, 1974, 10(4): 565-583

[19]

CaoH C, EvansA G. An experimental study of the fracture resistance of bimaterial interface[J]. Mech of Mat, 1989, 7(4): 295-305

[20]

CharalambidesP G, CaoH C, LundJ, et al.. Development of test method for measuring the mixed mode fracture resistance of bimaterial interfaces[J]. Mech of Mat, 1990, 8(4): 269-283

[21]

CharalambidesP G, LundJ, EvansA G, et al.. A test specimen for determining the resistance of bimaterial interfaces[J]. J Appl Mech, 1989, 56(1): 77-82

[22]

SuoZ, HutchinsonJ W. On sandwich test specimen for measuring interface crack toughness[J]. Mat Sci Eng, 1989, A107(3): 135-143

[23]

WangJ S, SuoZ. Experimental determination of interfacial toughness using Brazil-nut-sandwich[J]. Acta Met, 1990, 38(7): 1279-1290

[24]

WilliamsJ G. On the calculation of energy release rates for cracked laminates[J]. Int J Fract, 1988, 36(2): 101-119

[25]

DaiY, HeJ W, ZhengL, et al.ChenC Q, ChaturvediM C, et al.. The numerical analysis of the strain energy release rate of interfacial crack[A]. Proc of Int Conf on Failure Analysis and Prevention[C], 1995, Beijing, International Academic Publishers: 701-704

[26]

RubinsteinA A, WangP. The fracture toughness of particulate-reinforced brittle matrix[J]. J Mech Phys Solids, 1998, 46(7): 1139-1154

[27]

DaiY, HwangK C. A finite element investigation of unsteady crack growth in power-law hardening materials under small-scale yielding conditions[J]. Engineering Fracture Mechanics, 1989, 34(3): 531-546

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/