Existence of positive solutions in a delay logistic difference equation

Ying-gao Zhou

Journal of Central South University ›› 2002, Vol. 9 ›› Issue (2) : 142 -144.

PDF
Journal of Central South University ›› 2002, Vol. 9 ›› Issue (2) : 142 -144. DOI: 10.1007/s11771-002-0060-9
Article

Existence of positive solutions in a delay logistic difference equation

Author information +
History +
PDF

Abstract

The author studied the existence of positive solutions of the delay logistic difference equation

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta \gamma _n = p_n \gamma _n (1 - \gamma _{\tau (n)} ),n = 0,1,2,....$$\end{document}
where {pn} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathop {\lim }\limits_{n \to \infty } $$\end{document} τ (n)=∞. A sufficient condition for the existence of positive solutions of the equation was given.

Keywords

positive solutions / logistic delay difference equation / oscillation

Cite this article

Download citation ▾
Ying-gao Zhou. Existence of positive solutions in a delay logistic difference equation. Journal of Central South University, 2002, 9(2): 142-144 DOI:10.1007/s11771-002-0060-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HutchinsonG E. Circular caused systems in ecology[J]. Ann New York Acad Sci, 1948, 50: 221-246

[2]

JosephSo W H, YuJ S. Global attractivity for a population model with time delay[J]. Proc Amer Math Soc, 1995, 123: 2687-2694

[3]

SugieJ. On the stability for a population growth equation with time delay[J]. Proc Roy Soc Edinburgh (Ser A), 1992, 120: 179-184

[4]

WrightE M. A non-linear difference-differential equation[J]. J Reine Angew Math, 1955, 194: 66-87

[5]

CHEN Ming-po, YU J S. Oscillation and global attractivity in a delay logistic difference equation[J]. J Difference Equ Applic, 1995, (1): 227–237.

[6]

Erbe L H, Zhang B G. Oscillation of discrete analogues of delay equations[J]. Diff Integral Equations, 1989, (2): 300–309.

[7]

PhilosCH G. Oscillations of some difference equations[J]. Funkcial Ekvac, 1991, 34: 157-172

[8]

PhulosCh G. Oscillations in a nonantonomous delay logistic difference equation[J]. Proc Edinburgh Math Soc, 1992, 35: 121-131

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/